Advertisement

Metabolomics

, 16:15 | Cite as

Sex-related differences in urinary immune-related metabolic profiling of alopecia areata patients

  • Yu Ra Lee
  • Haksoon Kim
  • Bark Lynn Lew
  • Woo Young Sim
  • Jeongae Lee
  • Han Bin Oh
  • Jongki HongEmail author
  • Bong Chul ChungEmail author
Original Article

Abstract

Introduction

Alopecia areata is a well-known autoimmune disease affecting humans. Polyamines are closely associated with proliferation and inflammation, and steroid hormones are involved in immune responses. Additionally, bile acids play roles in immune homeostasis by activating various signaling pathways; however, the roles of these substances and their metabolites in alopecia areata remain unclear.

Objectives

In this study, we aimed to identify differences in metabolite levels in urine samples from patients with alopecia areata and healthy controls.

Methods

To assess polyamine, androgen, and bile acid concentrations, we performed high-performance liquid chromatography–tandem mass spectrometry.

Results

Our results showed that spermine and dehydroepiandrosterone levels differed significantly between male patients and controls, whereas ursodeoxycholic acid levels were significantly higher in female patients with alopecia areata than in controls.

Conclusion

Our findings suggested different urinary polyamine, androgen, and bile acid concentrations between alopecia areata patients and normal controls. Additionally, levels of endogenous substances varied according to sex, and this should be considered when developing appropriate treatments and diagnostic techniques. Our findings improve our understanding of polyamine, androgen, and bile acid profiles in patients with alopecia areata and highlight the need to consider sex-related differences.

Keywords

Alopecia areata Polyamine Androgen Bile acid Immune 

Notes

Acknowledgements

This study was supported by a grant from the Korea Institute of Science and Technology Institutional Program (Grant No. 2E29290).

Author contributions

YRL and HK wrote the manuscript and performed the experiments. BLL and WYS contributed to the collection of essential samples. JL analyzed the data. HBO and JH designed the experiments. BCC supervised the research. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were approved by the Ethics Committee of the Kyung Hee University Medical center at Gangdong and approved by the institutional review board (IRB No. 2016-11-037-007) and performed in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all patients and controls prior to sample collection, and consent was obtained from a parent or legal guardian prior to participation by minors in this study.

References

  1. Ahn, R. S., Lee, Y. J., Choi, J. Y., Kwon, H. B., & Chun, S. I. (2007). Salivary cortisol and DHEA levels in the Korean population: age-related differences, diurnal rhythm, and correlations with serum levels. Yonsei Medical Journal, 48(3), 379–388.  https://doi.org/10.3349/ymj.2007.48.3.379.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amaral, J. D., Viana, R. J., Ramalho, R. M., Steer, C. J., & Rodrigues, C. M. (2009). Bile acids: regulation of apoptosis by ursodeoxycholic acid. Journal of Lipid Research, 50(9), 1721–1734.  https://doi.org/10.1194/jlr.R900011-JLR200.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bang, H. J., Yang, Y. J., Lho, D. S., Lee, W. Y., Sim, W. Y., & Chung, B. C. (2004). Comparative studies on level of androgens in hair and plasma with premature male-pattern baldness. Journal of Dermatological Science, 34(1), 11–16.CrossRefGoogle Scholar
  4. Bendera, R., & Wilson, L. S. (2019). The regulatory effect of biogenic polyamines spermine and spermidine in men and women. Open Journal of Endocrine and Metabolic Diseases, 9(03), 35.CrossRefGoogle Scholar
  5. Bodemer, C., Peuchmaur, M., Fraitaig, S., Chatenoud, L., Brousse, N., & De Prost, Y. (2000). Role of cytotoxic T cells in chronic alopecia areata. Journal of Investigative Dermatology, 114(1), 112–116.  https://doi.org/10.1046/j.1523-1747.2000.00828.x.CrossRefPubMedGoogle Scholar
  6. Brooks, W. H. (1995). Polyamine involvement in the cell cycle, apoptosis, and autoimmunity. Medical Hypotheses, 44(5), 331–338.CrossRefGoogle Scholar
  7. Brooks, W. H. (2012). Autoimmune diseases and polyamines. Clinical Reviews in Allergy & Immunology, 42(1), 58–70.  https://doi.org/10.1007/s12016-011-8290-y.CrossRefGoogle Scholar
  8. Buyanova, S. M., Chistyakov, D. V., Astakhova, A. A., & Sergeeva, M. G. (2017). The effect of dehydroepiandrosterone on inflammatory response of astroglial cells. Biochemistry Moscow Supplement Series A: Membrane and Cell Biology, 11(4), 304–310.  https://doi.org/10.1134/s199074781704002x.CrossRefGoogle Scholar
  9. Byun, J. A., Lee, S. H., Jung, B. H., Choi, M. H., Moon, M. H., & Chung, B. C. (2008). Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography–tandem mass spectrometry. Biomedical Chromatography, 22(1), 73–80.  https://doi.org/10.1002/bmc.898.CrossRefPubMedGoogle Scholar
  10. Calmus, Y., & Poupon, R. (2014). Shaping macrophages function and innate immunity by bile acids: Mechanisms and implication in cholestatic liver diseases. Clinics and Research in Hepatology and Gastroenterology, 38(5), 550–556.  https://doi.org/10.1016/j.clinre.2014.07.007.CrossRefPubMedGoogle Scholar
  11. Chavez-Talavera, O., Tailleux, A., Lefebvre, P., & Staels, B. (2017). Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 152(7), 1679–1694.  https://doi.org/10.1053/j.gastro.2017.01.055.CrossRefGoogle Scholar
  12. Cheng, M. L., Shiao, M. S., Chiu, D. T., Weng, S. F., Tang, H. Y., & Ho, H. Y. (2011). Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics. Biochemical Pharmacology, 82(11), 1549–1561.  https://doi.org/10.1016/j.bcp.2011.07.104.CrossRefPubMedGoogle Scholar
  13. Cho, H. J., Kim, J. D., Lee, W. Y., Chung, B. C., & Choi, M. H. (2009). Quantitative metabolic profiling of 21 endogenous corticosteroids in urine by liquid chromatography-triple quadrupole-mass spectrometry. Analytica Chimica Acta, 632(1), 101–108.  https://doi.org/10.1016/j.aca.2008.10.059.CrossRefPubMedGoogle Scholar
  14. Choi, M. H., Yoo, Y. S., & Chung, B. C. (2001). Biochemical roles of testosterone and epitestosterone to 5 alpha-reductase as indicators of male-pattern baldness. Journal of Investigative Dermatology, 116(1), 57–61.  https://doi.org/10.1046/j.1523-1747.2001.00188.x.CrossRefPubMedGoogle Scholar
  15. Choi, M. H., Moon, J. Y., Cho, S. H., Chung, B. C., & Lee, E. J. (2011). Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma. BMC Cancer, 11, 342.  https://doi.org/10.1186/1471-2407-11-342.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cutolo, M., Sulli, A., Capellino, S., Villaggio, B., Montagna, P., Seriolo, B., et al. (2004). Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus, 13(9), 635–638.  https://doi.org/10.1191/0961203304lu1094oa.CrossRefPubMedGoogle Scholar
  17. Facchini, A., Borzi, R. M., Olivotto, E., Platano, D., Pagani, S., Cetrullo, S., et al. (2012). Role of polyamines in hypertrophy and terminal differentiation of osteoarthritic chondrocytes. Amino Acids, 42(2–3), 667–678.  https://doi.org/10.1007/s00726-011-1041-9.CrossRefPubMedGoogle Scholar
  18. Ferioli, M. E., Pinotti, O., & Pirona, L. (1999). Gender-related differences in polyamine oxidase activity in rat tissues. Amino Acids, 17(2), 139–148.CrossRefGoogle Scholar
  19. Fiorucci, S., Biagioli, M., Zampella, A., & Distrutti, E. (2018). Bile acids activated receptors regulate innate immunity. Frontiers in Immunology, 9, 1853.  https://doi.org/10.3389/fimmu.2018.01853.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Furie, R. (2000). Dehydroepiandrosterone and biologics in the treatment of systemic lupus erythematosus. Current Rheumatology Reports, 2(1), 44–50.CrossRefGoogle Scholar
  21. Gilhar, A., Etzioni, A., & Paus, R. (2012). Alopecia areata. New England Journal of Medicine, 366(16), 1515–1525.  https://doi.org/10.1056/NEJMra1103442.CrossRefPubMedGoogle Scholar
  22. Gonzalez-Montelongo, M. C., Marin, R., Perez, J. A., Gomez, T., & Diaz, M. (2013). Polyamines transduce the nongenomic, androgen-induced calcium sensitization in intestinal smooth muscle. Molecular Endocrinology, 27(10), 1603–1616.  https://doi.org/10.1210/me.2013-1201.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gustafsson, J. E., & Uzqueda, H. R. (1978). The influence of citrate and phosphate on the Mancini single radial immunodiffusion technique and suggested improvements for the determination of urinary albumin. Clinica Chimica Acta, 90(3), 249–257.  https://doi.org/10.1016/0009-8981(78)90264-4.CrossRefGoogle Scholar
  24. Hazeldine, J., Arlt, W., & Lord, J. M. (2010). Dehydroepiandrosterone as a regulator of immune cell function. Journal of Steroid Biochemistry and Molecular Biology, 120(2–3), 127–136.  https://doi.org/10.1016/j.jsbmb.2009.12.016.CrossRefPubMedGoogle Scholar
  25. Hedlund, E., Gustafsson, J. A., & Warner, M. (2001). Cytochrome P450 in the brain; a review. Current Drug Metabolism, 2(3), 245–263.CrossRefGoogle Scholar
  26. Hedman, M., Nilsson, E., & de la Torre, B. (1992). Low blood and synovial fluid levels of sulpho-conjugated steroids in rheumatoid arthritis. Clinical and Experimental Rheumatology, 10(1), 25–30.PubMedGoogle Scholar
  27. Im, E., Lew, B. L., Lee, M. Y., Lee, J., Paeng, K. J., & Chung, B. C. (2019). Simultaneous determination of androgens and prostaglandins in human urine using ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1109, 45–53.  https://doi.org/10.1016/j.jchromb.2019.01.022.CrossRefPubMedGoogle Scholar
  28. Kavathia, N., Jain, A., Walston, J., Beamer, B. A., & Fedarko, N. S. (2009). Serum markers of apoptosis decrease with age and cancer stage. Aging, 1(7), 652–663.  https://doi.org/10.18632/aging.100069.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kim, M. J., & Suh, D. J. (1986). Profiles of serum bile acids in liver diseases. Korean Journal of Internal Medicine, 1(1), 37–42.  https://doi.org/10.3904/kjim.1986.1.1.37.CrossRefPubMedGoogle Scholar
  30. Kim, H. A., Lee, H. S., Shin, T. H., Jung, J. Y., Baek, W. Y., Park, H. J., et al. (2018). Polyamine patterns in plasma of patients with systemic lupus erythematosus and fever. Lupus, 27(6), 930–938.  https://doi.org/10.1177/0961203317751860.CrossRefPubMedGoogle Scholar
  31. Kumar, B. S., Chung, B. C., Lee, Y. J., Yi, H. J., Lee, B. H., & Jung, B. H. (2011). Gas chromatography–mass spectrometry-based simultaneous quantitative analytical method for urinary oxysterols and bile acids in rats. Analytical Biochemistry, 408(2), 242–252.  https://doi.org/10.1016/j.ab.2010.09.031.CrossRefPubMedGoogle Scholar
  32. Lee, N. K., Skinner, J. P., Zajac, J. D., & MacLean, H. E. (2011). Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. American Journal of Physiology: Endocrinology and Metabolism, 301(1), E172–179.  https://doi.org/10.1152/ajpendo.00094.2011.CrossRefPubMedGoogle Scholar
  33. Lee, Y. R., Lee, J., Lew, B. L., Sim, W. Y., Hong, J., & Chung, B. C. (2019a). Distribution of polyamines may be altered in different scalp regions of patients with hair loss. Experimental Dermatology, 28(9), 1083–1086.  https://doi.org/10.1111/exd.13998.CrossRefPubMedGoogle Scholar
  34. Lee, Y. R., Lew, B. L., Sim, W. Y., Lee, J., Hong, J., & Chung, B. C. (2019b). Altered polyamine profiling in the hair of patients with androgenic alopecia and alopecia areata. Journal of Dermatology, 46(11), 985–992.  https://doi.org/10.1111/1346-8138.15063.CrossRefPubMedGoogle Scholar
  35. Li, Y., Tang, R., Leung, P. S. C., Gershwin, M. E., & Ma, X. (2017). Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmunity Reviews, 16(9), 885–896.  https://doi.org/10.1016/j.autrev.2017.07.002.CrossRefPubMedGoogle Scholar
  36. Moon, J. Y., Kwon, W., Suh, S., Cheong, J. C., In, M. K., Chung, B. C., et al. (2014). Reference ranges for urinary levels of testosterone and epitestosterone, which may reveal gonadal function, in a Korean male population. Journal of Steroid Biochemistry and Molecular Biology, 140, 100–105.  https://doi.org/10.1016/j.jsbmb.2013.12.001.CrossRefPubMedGoogle Scholar
  37. Moulton, V. R. (2018). Sex hormones in acquired immunity and autoimmune disease. Frontiers in Immunology, 9, 2279.  https://doi.org/10.3389/fimmu.2018.02279.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nakamura, K., Yoneda, M., Yokohama, S., Tamori, K., Sato, Y., Aso, K., et al. (1998). Efficacy of ursodeoxycholic acid in Japanese patients with type 1 autoimmune hepatitis. Journal of Gastroenterology and Hepatology, 13(5), 490–495.CrossRefGoogle Scholar
  39. Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism, 59(3), 551–555.  https://doi.org/10.1210/jcem-59-3-551.CrossRefPubMedGoogle Scholar
  40. Palaszynski, K. M., Loo, K. K., Ashouri, J. F., Liu, H. B., & Voskuhl, R. R. (2004). Androgens are protective in experimental autoimmune encephalomyelitis: Implications for multiple sclerosis. Journal of Neuroimmunology, 146(1–2), 144–152.CrossRefGoogle Scholar
  41. Pillai, R. B., Tolia, V., Rabah, R., Simpson, P. M., Vijesurier, R., & Lin, C. H. (1999). Increased colonic ornithine decarboxylase activity in inflammatory bowel disease in children. Digestive Diseases and Sciences, 44(8), 1565–1570.CrossRefGoogle Scholar
  42. Pirinen, E., Gylling, H., Itkonen, P., Yaluri, N., Heikkinen, S., Pietila, M., et al. (2010). Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis. Amino Acids, 38(2), 549–560.  https://doi.org/10.1007/s00726-009-0416-7.CrossRefPubMedGoogle Scholar
  43. Pratt, C. H., King, L. E., Jr., Messenger, A. G., Christiano, A. M., & Sundberg, J. P. (2017). Alopecia areata. Nature Reviews Disease Primers, 3, 17011.  https://doi.org/10.1038/nrdp.2017.11.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ryu, H. K., Kim, K. M., Yoo, E. A., Sim, W. Y., & Chung, B. C. (2006). Evaluation of androgens in the scalp hair and plasma of patients with male-pattern baldness before and after finasteride administration. British Journal of Dermatology, 154(4), 730–734.  https://doi.org/10.1111/j.1365-2133.2005.07072.x.CrossRefPubMedGoogle Scholar
  45. Silva, M. A., Klafke, J. Z., Rossato, M. F., Gewehr, C., Guerra, G. P., Rubin, M. A., et al. (2011). Role of peripheral polyamines in the development of inflammatory pain. Biochemical Pharmacology, 82(3), 269–277.  https://doi.org/10.1016/j.bcp.2011.04.015.CrossRefPubMedGoogle Scholar
  46. Soulet, D., & Rivest, S. (2003). Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system. Journal of Cell Biology, 162(2), 257–268.  https://doi.org/10.1083/jcb.200301097.CrossRefPubMedGoogle Scholar
  47. Steinberg, A. D., Melez, K. A., Raveche, E. S., Reeves, J. P., Boegel, W. A., Smathers, P. A., et al. (1979). Approach to the study of the role of sex hormones in autoimmunity. Arthritis & Rheumatism, 22(11), 1170–1176.CrossRefGoogle Scholar
  48. Straub, R. H., Vogl, D., Gross, V., Lang, B., Scholmerich, J., & Andus, T. (1998). Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. American Journal of Gastroenterology, 93(11), 2197–2202.  https://doi.org/10.1111/j.1572-0241.1998.00535.x.CrossRefPubMedGoogle Scholar
  49. Takaba, H., & Takayanagi, H. (2017). The mechanisms of T cell selection in the thymus. Trends in Immunology, 38(11), 805–816.  https://doi.org/10.1016/j.it.2017.07.010.CrossRefPubMedGoogle Scholar
  50. Yukioka, K., Wakitani, S., Yukioka, M., Furumitsu, Y., Shichikawa, K., Ochi, T., et al. (1992). Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. Journal of Rheumatology, 19(5), 689–692.PubMedGoogle Scholar
  51. Zhang, M., Caragine, T., Wang, H., Cohen, P. S., Botchkina, G., Soda, K., et al. (1997). Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: A counterregulatory mechanism that restrains the immune response. Journal of Experimental Medicine, 185(10), 1759–1768.  https://doi.org/10.1084/jem.185.10.1759.CrossRefPubMedGoogle Scholar
  52. Zhang, M., Wang, H., & Tracey, K. J. (2000). Regulation of macrophage activation and inflammation by spermine: A new chapter in an old story. Critical Care Medicine, 28(4 Suppl), N60–66.CrossRefGoogle Scholar
  53. Zhu, C., Fuchs, C. D., Halilbasic, E., & Trauner, M. (2016a). Bile acids in regulation of inflammation and immunity: Friend or foe? Clinical and Experimental Rheumatology, 34(4 Suppl 98), 25–31.PubMedGoogle Scholar
  54. Zhu, M. L., Bakhru, P., Conley, B., Nelson, J. S., Free, M., Martin, A., et al. (2016b). Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nature Communications, 7, 11350.  https://doi.org/10.1038/ncomms11350.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Molecular Recognition Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.KHU-KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoulKorea
  3. 3.Department of ChemistrySogang UniversitySeoulKorea
  4. 4.Department of DermatologyKyung Hee University Hospital at Gangdong, Kyung Hee UniversitySeoulKorea
  5. 5.College of PharmacyKyung Hee UniversitySeoulKorea

Personalised recommendations