Advertisement

Metabolomics

, 15:152 | Cite as

Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review

  • Chaofu Ke
  • Chen-Wei Pan
  • Yuxia Zhang
  • Xiaohong Zhu
  • Yonghong ZhangEmail author
Review Article
  • 107 Downloads

Abstract

Introduction

Ischemic stroke (IS) is a major contributor to the global disease burden, and effective biomarkers for IS management in clinical practice are urgently needed. Metabolomics can detect metabolites that are small enough to cross the blood–brain barrier in a high-throughput manner, and thus represents a powerful tool for discovering biomarkers of IS.

Objectives

In this study, we conducted a systematic review to identify potential metabolic biomarkers and pathways that might facilitate risk predictions, clinical diagnoses, the recognition of complications, predictions of recurrence and an understanding of the pathogenesis of IS.

Methods

The PubMed and Web of Science databases were searched for relevant studies published between January 2000 and July 2019. The study objectives, study designs and reported metabolic biomarkers were systematically examined and compared. Pathway analysis was performed using the MetaboAnalyst online software.

Results

Twenty-eight studies were included in this systematic review. Many consistent metabolites, including isoleucine, leucine, valine, glycine, lysine, glutamate, LysoPC(16:0), LysoPC(18:2), serine, uric acid, citrate and palmitic acid, possess potential as biomarkers of IS. Metabolic pathways and dysregulations that are implicated in excitotoxicity, inflammation, apoptosis, oxidative stress, neuroprotection, energy failure, and elevation of intracellular Ca2+ levels, were indicated as playing important roles in the development and progression of IS.

Conclusions

This systematic review summarizes potential metabolic biomarkers and pathways related to IS, which may provide opportunities for the construction of diagnostic or predictive models for IS and the discovery of novel therapeutic targets.

Keywords

Ischemic stroke Metabolomics Biomarker Metabolic pathway Pathogenesis 

Abbreviations

ABCD2

Age, blood pressure, clinical features, duration of symptoms, and diabetes scale

BCAA

Branched chain amino acid

DALY

Disability-adjusted life year

ICH

Intracerebral hemorrhage

IDO

Indoleamine-2,3-dioxygenase

IS

Ischemic stroke

NMDA

N-methyl-D-aspartate

NMR

Nuclear magnetic resonance

LPC

Lysophosphatidylcholine

LAA

Large-artery atherosclerosis

PC

Phosphatidylcholine

PLA2

Phospholipase A2

PSCI

Post-stroke cognition impairment

PSD

Post-stroke depression

TMAO

Trimethylamine N-oxide

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Project Number 81703316), Natural Science Foundation of Jiangsu Province (Project Number BK20170350) and China Postdoctoral Science Foundation (Project Number 2017M610353).

Author contributions

YZ and CK conceived and designed the research; CP and CK wrote the manuscript; and CK and YZ performed the data analysis. All authors contributed to the interpretations of the findings. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11306_2019_1615_MOESM1_ESM.doc (174 kb)
Supplementary material 1 (DOC 174 kb)

References

  1. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., & Melino, G. (2014). Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 39(4), 191–198.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brosnan, J. T., & Brosnan, M. E. (2006). Branched-chain amino acids: Enzyme and substrate regulation. Journal of Nutrition, 136(1 Suppl), 207S.PubMedCrossRefGoogle Scholar
  3. Castellanos, M., & Serena, J. (2007). Applicability of biomarkers in ischemic stroke. Cerebrovascular Diseases, 24(1), 7–15.PubMedCrossRefGoogle Scholar
  4. Cherubini, A., Ruggiero, C., Polidori, M. C., & Mecocci, P. (2005). Potential markers of oxidative stress in stroke. Free Radical Biology & Medicine, 39(7), 841–852.CrossRefGoogle Scholar
  5. Clarke, R., Collins, R., Lewington, S., Donald, A., Alfthan, G., Tuomilehto, J., et al. (2002). Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA, 288(16), 2015.CrossRefGoogle Scholar
  6. Cunningham, T. J., Yao, L., & Lucena, A. (2008). Product inhibition of secreted phospholipase A2 may explain lysophosphatidylcholines’ unexpected therapeutic properties. Journal of Inflammation, 5(1), 17.PubMedCrossRefGoogle Scholar
  7. Ding, X., Liu, R., Li, W., Ni, H., Liu, Y., Wu, D., et al. (2015). A metabonomic investigation on the biochemical perturbation in post-stroke patients with depressive disorder (PSD). Metabolic Brain Disease, 31(2), 279–287.PubMedCrossRefGoogle Scholar
  8. Ducker, G., & Rabinowitz, J. (2016). One-carbon metabolism in health and disease. Cell Metabolism, 25(1), 27.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dunn, W. B., Lin, W., Broadhurst, D., Begley, P., Brown, M., Zelena, E., et al. (2015). Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics, 11, 9–26.  https://doi.org/10.1007/s11306-014-0707-1.CrossRefPubMedGoogle Scholar
  10. Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology, Biochemistry and Behavior, 87(1), 179–197.PubMedCrossRefGoogle Scholar
  11. Fatokun, A. A., Hunt, N. H., & Ball, H. J. (2013). Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: Characteristics and potential roles in health and disease. Amino Acids, 45(6), 1319–1329.PubMedCrossRefGoogle Scholar
  12. Feigin, V., & Krishnamurthi, R. V. (2016). Global burden of stroke. In J. C. Grotta, G. W. Albers, J. P. Broderick, S. E. Kasner, E. H. Lo, A. D. Mendelow, et al. (Eds.), Stroke: Pathophysiology, diagnosis, and management (6th ed.). Elsevier.Google Scholar
  13. Feigin, V., Krishnamurthi, R., Parmar, P., Norrving, B., Mensah, G., Bennett, D., et al. (2015). Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: The GBD 2013 study. Neuroepidemiology, 45(3), 161–176.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. Journal of Nutrition, 135(6 Suppl), 1539S.PubMedCrossRefGoogle Scholar
  15. Fisher, M., & Schaebitz, W. (2000). An overview of acute stroke therapy: Past, present, and future. Archives of Internal Medicine, 160(21), 3196–3206.PubMedCrossRefGoogle Scholar
  16. Floegel, A., Kühn, T., Sookthai, D., Johnson, T., Prehn, C., Rolle-Kampczyk, U., et al. (2018). Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. European Journal of Epidemiology, 33(1), 55–66.PubMedCrossRefGoogle Scholar
  17. Gold, A. B., Herrmann, N., Swardfager, W., Black, S. E., Aviv, R. I., Tennen, G., et al. (2011). The relationship between indoleamine 2,3-dioxygenase activity and post-stroke cognitive impairment. Journal of Neuroinflammation, 8(1), 17.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Goulart, V. A. M., Sena, M. M., Mendes, T. O., Menezes, H. C., Cardeal, Z. L., Paiva, M. J. N., et al. (2019). Amino acid biosignature in plasma among ischemic stroke subtypes. BioMed Research International.  https://doi.org/10.1155/2019/8480468.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grandizoli, C. W. P. S., Lange, M. C., Novak, F. T. M., Campos, F. R., & Barison, A. (2014). Ischemic stroke progress evaluation by 31P NMR-based metabonomic of human serum. Journal of the Brazilian Chemical Society, 25(6), 1143–1149.Google Scholar
  20. Guasch-Ferre, M., Zheng, Y., Ruiz-Canela, M., Hruby, A., MartÃ-nez-Gonzà lez, M. A., Clish, C. B., et al. (2016). Plasma acylcarnitines and risk of cardiovascular disease: Effect of Mediterranean diet interventions. American Journal of Clinical Nutrition, 103(6), 1408–1416.PubMedCrossRefGoogle Scholar
  21. Guo, X., Li, Z., Zhou, Y., Yu, S., Yang, H., Zheng, L., et al. (2019). Metabolic profile for prediction of ischemic stroke in Chinese hypertensive population. Journal of Stroke and Cerebrovascular Diseases, 28(4), 1062–1069.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.035.CrossRefPubMedGoogle Scholar
  22. Hayden, J. A., Cote, P., & Bombardier, C. (2006). Evaluation of the quality of prognosis studies in systematic reviews. Annals of Internal Medicine, 144(6), 427–437.  https://doi.org/10.7326/0003-4819-144-6-200603210-00010.CrossRefPubMedGoogle Scholar
  23. He, Y., Li, Y., Chen, Y., Feng, L., & Nie, Z. (2014). Homocysteine level and risk of different stroke types: A meta-analysis of prospective observational studies. Nutrition Metabolism & Cardiovascular Diseases Nmcd, 24(11), 1158–1165.CrossRefGoogle Scholar
  24. Hojjati, M. R., Li, Z., Zhou, H., Tang, S., Huan, C., Ooi, E., et al. (2005). Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. Journal of Biological Chemistry, 280(11), 10284–10289.PubMedCrossRefGoogle Scholar
  25. Holland, W. L., & Summers, S. A. (2008). Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocrine Reviews, 29(4), 381–402.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Holmes, M. V., Millwood, I. Y., Kartsonaki, C., Hill, M. R., Bennett, D. A., Boxall, R., et al. (2018). Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. Journal of the American College of Cardiology, 71(6), 620–632.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hu, S., Gao, R., Liu, L., Zhu, M., Wang, W., Wang, Y., et al. (2019b). Summary of the 2018 report on cardiovascular diseases in China. Chinese Circulation Journal, 34(3), 209–220.Google Scholar
  28. Hu, Z., Zhu, Z., Cao, Y., Wang, L., Sun, X., Dong, J., et al. (2016). Rapid and sensitive differentiating ischemic and hemorrhagic strokes by dried blood spot based direct injection mass spectrometry metabolomics analysis. Journal of Clinical Laboratory Analysis, 30(6), 823–830.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hu, Z. C., Fan, S. H., Liu, M. L., Zhong, J. J., Cao, D., Zheng, P., et al. (2019a). Objective diagnosis of post-stroke depression using NMR-based plasma metabonomics. Neuropsychiatric Disease And Treatment, 15, 867–881.  https://doi.org/10.2147/Ndt.S192307.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang, Y., Gu, C. Y., Xia, X. S., & Li, X. (2017). Metabolomics analysis on patients with ischemic stroke based on ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. International Journal Of Clinical And Experimental Medicine, 10(7), 10277–10286.Google Scholar
  31. Hutson, S. M., Lieth, E., & LaNoue, K. F. (2001). Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. The Journal of Nutrition, 131(3), 846S–850S.PubMedCrossRefGoogle Scholar
  32. Jalal, F. Y., Böhlke, M., & Maher, T. J. (2010). Acetyl-l-carnitine reduces the infarct size and striatal glutamate outflow following focal cerebral ischemia in rats. Annals of the New York Academy of Sciences, 1199(1), 95–104.PubMedCrossRefGoogle Scholar
  33. Jiang, Z., Sun, J., Liang, Q., Cai, Y., Li, S., Huang, Y., et al. (2011). A metabonomic approach applied to predict patients with cerebral infarction. Talanta, 84(2), 298–304.  https://doi.org/10.1016/j.talanta.2011.01.015.CrossRefPubMedGoogle Scholar
  34. Jickling, G. C., & Sharp, F. R. (2015). Biomarker panels in ischemic stroke. Stroke, 46(3), 915–920.  https://doi.org/10.1161/Strokeaha.114.005604.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jones, L. L., Mcdonald, D. A., & Borum, P. R. (2010). Acylcarnitines: Role in brain. Progress in Lipid Research, 49(1), 61–75.PubMedCrossRefGoogle Scholar
  36. Jové, M., Mauricapdevila, G., Suárez, I., Cambray, S., Sanahuja, J., Quílez, A., et al. (2015). Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology, 84(1), 36.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jung, J. Y., Lee, H. S., Kang, D. G., Kim, N. S., Cha, M. H., Bang, O. S., et al. (2011). 1H-NMR-based metabolomics study of cerebral infarction. Stroke; A Journal of Cerebral Circulation, 42(5), 1282.CrossRefGoogle Scholar
  38. Kagiyama, T., Glushakov, A. V., Sumners, C., Roose, B., Dennis, D. M., Phillips, M. I., et al. (2004). Neuroprotective action of halogenated derivatives of l-phenylalanine. Stroke, 35(5), 1192–1196.PubMedCrossRefGoogle Scholar
  39. Kawabori, M., & Yenari, M. A. (2015). Inflammatory responses in brain ischemia. Current Medicinal Chemistry, 22(10), 1258–1277.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kimberly, W. T., Wang, Y., Pham, L., Furie, K. L., & Gerszten, R. E. (2013). Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke; A Journal of Cerebral Circulation, 44(5), 1389.CrossRefGoogle Scholar
  41. Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576–585.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kriz, J. (2006). Inflammation in ischemic brain injury: Timing is important. Critical Reviews in Neurobiology, 18(1–2), 145.PubMedCrossRefGoogle Scholar
  43. Lai, T. W., Zhang, S., & Wang, Y. T. (2014). Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology, 115, 157–188.  https://doi.org/10.1016/j.pneurobio.2013.11.006.CrossRefPubMedGoogle Scholar
  44. Lee, Y., Khan, A., Hong, S., Jee, S. H., & Park, Y. H. (2017). A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: A retrospective cohort study. Molecular BioSystems, 13(6), 1109–1120.PubMedCrossRefGoogle Scholar
  45. Liu, P., Li, R., Antonov, A. A., Wang, L., Li, W., Hua, Y., et al. (2017). Discovery of metabolite biomarkers for acute ischemic stroke progression. Journal of Proteome Research, 16(2), 773–779.PubMedCrossRefGoogle Scholar
  46. Liu, M., Tang, L., Liu, X., Fang, J., Zhan, H., Wu, H., et al. (2016). An evidence-based review of related metabolites and metabolic network research on cerebral ischemia. Oxidative Medicine and Cellular Longevity, 2016, 9162074.  https://doi.org/10.1155/2016/9162074.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu, M., Zhou, K., Li, H., Dong, X., Tan, G., Chai, Y., et al. (2015). Potential of serum metabolites for diagnosing post-stroke cognitive impairment. Molecular BioSystems, 11(12), 3287–3296.PubMedCrossRefGoogle Scholar
  48. Locasale, J. W. (2013). Serine, glycine and the one-carbon cycle: Cancer metabolism in full circle. Nature Reviews Cancer, 13(8), 572–583.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lumbreras, B., Porta, M., Marquez, S., Pollan, M., Parker, L. A., & Hernandez-Aguado, I. (2008). QUADOMICS: An adaptation of the Quality Assessment of Diagnostic Accuracy Assessment (QUADAS) for the evaluation of the methodological quality of studies on the diagnostic accuracy of ‘-omics’-based technologies. Clinical Biochemistry, 41(16–17), 1316–1325.  https://doi.org/10.1016/j.clinbiochem.2008.06.018.CrossRefPubMedGoogle Scholar
  50. Manzanero, S., Santro, T., & Arumugam, T. V. (2013). Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochemistry International, 62(5), 712–718.PubMedCrossRefGoogle Scholar
  51. Matsumoto, T., Kobayashi, T., & Kamata, K. (2007). Role of lysophosphatidylcholine (LPC) in atherosclerosis. Current Medicinal Chemistry, 14(30), 3209–3220.PubMedCrossRefGoogle Scholar
  52. Mcbean, G. J. (2012). The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids, 42(1), 199–205.PubMedCrossRefGoogle Scholar
  53. McIlvoy, L. H. (2005). The effect of hypothermia and hyperthermia on acute brain injury. AACN Advanced Critical Care, 16(4), 488–500.Google Scholar
  54. Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. Journal of Nutrition, 130(4S Suppl), 1007S.PubMedCrossRefGoogle Scholar
  55. Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Metabonomics. Nature, 455(7216), 1054–1056.  https://doi.org/10.1038/4551054a.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Obinata, H., & Hla, T. (2012). Sphingosine 1-phosphate in coagulation and inflammation. Seminars in Immunopathology, 34(1), 73–91.PubMedCrossRefGoogle Scholar
  57. Ordway, R. W., Singer, J. J., & Walsh, J. J. (1991). Direct regulation of ion channels by fatty acids. Trends in Neurosciences, 14(3), 96–100.PubMedCrossRefGoogle Scholar
  58. Papes, F., Surpili, M. J., Langone, F., Trigo, J. R., & Arruda, P. (2001). The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Letters, 488(1), 34–38.PubMedCrossRefGoogle Scholar
  59. Park, T., Panek, R. L., Mueller, S. B., Hanselman, J. C., Rosebury, W. S., Robertson, A. W., et al. (2004). Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 110(22), 3465.PubMedCrossRefGoogle Scholar
  60. Parsons, R. B., Waring, R. H., Ramsden, D. B., & Williams, A. C. (1998). In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology, 19(4–5), 599–603.PubMedGoogle Scholar
  61. Qureshi, M. I., Vorkas, P. A., Coupland, A. P., Jenkins, I. H., Holmes, E., & Davies, A. H. (2016). Lessons from metabonomics on the neurobiology of stroke. Neuroscientist A Review Journal Bringing Neurobiology Neurology & Psychiatry, 23(4), 1073858416673327.Google Scholar
  62. Ruiz-Canela, M., Toledo, E., Clish, C. B., Hruby, A., Liang, L., Salassalvadó, J., et al. (2016). Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clinical Chemistry, 62(4), 582.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sautin, Y. Y., & Johnson, R. J. (2008). Uric acid: The oxidant-antioxidant paradox. Nucleosides, Nucleotides & Nucleic Acids, 27(6–7), 608–619.CrossRefGoogle Scholar
  64. Scafidi, S., Racz, J., Hazelton, J., Mckenna, M. C., & Fiskum, G. (2011). Neuroprotection by acetyl-l-carnitine after traumatic injury to the immature rat brain. Developmental Neuroscience, 32(5–6), 480–487.PubMedCentralPubMedGoogle Scholar
  65. Seo, W. K., Jo, G., Shin, M. J., & Oh, K. (2018). Medium-chain acylcarnitines are associated with cardioembolic stroke and stroke recurrence. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), 2245–2253.  https://doi.org/10.1161/ATVBAHA.118.311373.CrossRefPubMedGoogle Scholar
  66. Shah, S. H., KrausW, E., & Newgard, C. B. (2012). Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: Form and function. Circulation, 126(9), 1110–1120.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Smith, E. R., & Merrill, A. J. (1995). Differential roles of de Novo sphingolipid biosynthesis and turnover in the “Burst” of free sphingosine and sphinganine, and their 1-phosphates and N-Acyl-derivatives, that occurs upon changing the medium of cells in culture. Journal of Biological Chemistry, 270(32), 18749–18758.PubMedCrossRefGoogle Scholar
  68. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2008). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.CrossRefGoogle Scholar
  69. Stipanuk, M. H., & Ueki, I. (2011). Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. Journal of Inherited Metabolic Disease, 34(1), 17.PubMedCrossRefGoogle Scholar
  70. Sun, D., Tiedt, S., Yu, B., Jian, X., Gottesman, R. F., Mosley, T. H., et al. (2019). A prospective study of serum metabolites and risk of ischemic stroke. Neurology, 92(16), e1890–e1898.  https://doi.org/10.1212/WNL.0000000000007279.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sun, G. Y., Shelat, P. B., Jensen, M. B., Yan, H., Sun, A. Y., & Simonyi, A. (2010). Phospholipases A2 and inflammatory responses in the central nervous system. NeuroMolecular Medicine, 12(2), 133.PubMedCrossRefGoogle Scholar
  72. Sun, H., Zhao, J., Zhong, D., & Li, G. (2017). Potential serum biomarkers and metabonomic profiling of serum in ischemic stroke patients using UPLC/Q-TOF MS/MS. PLoS ONE, 12(12), e0189009.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Tabatabaie, L., Klomp, L. W., Berger, R., & Koning, T. J. D. (2010). Serine synthesis in the central nervous system: A review on serine deficiency disorders. Molecular Genetics and Metabolism, 99(3), 256–262.PubMedCrossRefGoogle Scholar
  74. Tolleson, W. H., Couch, L. H., Melchior, W. J., Jenkins, G. R., Muskhelishvili, M., Muskhelishvili, L., et al. (1999). Fumonisin B1 induces apoptosis in cultured human keratinocytes through sphinganine accumulation and ceramide depletion. International Journal of Oncology, 14(5), 833–843.PubMedGoogle Scholar
  75. Virmani, A., & Binienda, Z. (2004). Role of carnitine esters in brain neuropathology. Molecular Aspects of Medicine, 25(5), 533–549.PubMedCrossRefGoogle Scholar
  76. Wang, D., Kong, J., Wu, J., Wang, X., & Lai, M. (2017a). GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neuroscience Letters, 642, 7–13.PubMedCrossRefGoogle Scholar
  77. Wang, D. D., Toledo, E., Hruby, A., Rosner, B. A., Willett, W. C., Sun, Q., et al. (2017b). Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED trial (Prevención con Dieta Mediterránea). Circulation, 135(21), 2028.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15(7), 473–484.PubMedCrossRefGoogle Scholar
  80. Wong, P. T., Qu, K., Chimon, G. N., Seah, A. B., Chang, H. M., Wong, M. C., et al. (2006). High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: Possible involvement of hydrogen sulfide. Journal of Neuropathology and Experimental Neurology, 65(2), 109–115.PubMedCrossRefGoogle Scholar
  81. Woodruff, T. M., Thundyil, J., Tang, S., Sobey, C. G., Taylor, S. M., & Arumugam, T. V. (2011). Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Molecular Neurodegeneration, 6(1), 1–19.CrossRefGoogle Scholar
  82. Xia, J., Sinelnikov, I., Han, B., & Wishart, D. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Xiao, J., Jie, Z., Dan, S., Lin, W., Yu, L., Wu, H., et al. (2016). Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis. Neuropsychiatric Disease & Treatment, 12(1), 1919–1925.Google Scholar
  84. Yang, L., Lv, P., Ai, W., Li, L., Shen, S., Nie, H., et al. (2017). Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 409, 3211–3222.PubMedCrossRefGoogle Scholar
  85. Yao, W., Ji, F., Chen, Z., Zhang, N., Ren, S. Q., Zhang, X. Y., et al. (2012). Glycine exerts dual roles in ischemic injury through distinct mechanisms. Stroke; A Journal of Cerebral Circulation, 43(8), 2212–2220.CrossRefGoogle Scholar
  86. Zhang, T., Wu, X., Ke, C., Yin, M., Li, Z., Fan, L., et al. (2013). Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. Journal of Proteome Research, 12(1), 505–512.  https://doi.org/10.1021/pr3009572.CrossRefPubMedGoogle Scholar
  87. Zhang, W., & Zhang, X. A. (2015). A novel urinary metabolite signature for non-invasive post-stroke depression diagnosis. Cell Biochemistry and Biophysics, 72(3), 661.PubMedCrossRefGoogle Scholar
  88. Zhang, X., Li, Y., Liang, Y., Sun, P., Wu, X., Song, J., et al. (2017). Distinguishing intracerebral hemorrhage from acute cerebral infarction through metabolomics. Revista de Investigacion Clinica, 69(6), 319.PubMedGoogle Scholar
  89. Zheng, Y., Hu, F. B., Miguel, R. C., Clish, C. B., Courtney, D., Jordi, S. S., et al. (2016). Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvención con DIeta MEDiterránea (PREDIMED) Trial. Journal of the American Heart Association, 5(9), e003755.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., et al. (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111–124.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chaofu Ke
    • 1
  • Chen-Wei Pan
    • 2
  • Yuxia Zhang
    • 1
  • Xiaohong Zhu
    • 3
  • Yonghong Zhang
    • 1
    Email author
  1. 1.Department of Epidemiology and Biostatistics, School of Public HealthMedical College of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.School of Public HealthMedical College of Soochow UniversitySuzhouChina
  3. 3.Suzhou Industrial Park Centers for Disease Control and Prevention (Institute of Health Inspection and Supervision)SuzhouPeople’s Republic of China

Personalised recommendations