Advertisement

Metabolomics

, 15:147 | Cite as

A metabolic profile of routine needle biopsies identified tumor type specific metabolic signatures for breast cancer stratification: a pilot study

  • Narumi Harada-ShojiEmail author
  • Tomoyoshi Soga
  • Hiroshi Tada
  • Minoru Miyashita
  • Mutsuo Harada
  • Gou Watanabe
  • Yohei Hamanaka
  • Akiko Sato
  • Takashi Suzuki
  • Akihiko Suzuki
  • Takanori Ishida
Original Article

Abstract

Introduction

Metabolomics has recently emerged as a tool for understanding comprehensive tumor-associated metabolic dysregulation. However, only limited application of this technology has been introduced into the clinical setting of breast cancer.

Objectives

The aim of this study was to determine the feasibility of metabolome analysis using routine CNB/VAB samples from breast cancer patients and to elucidate metabolic signatures using metabolic profiling.

Methods

After breast cancer screenings, 20 consecutive patients underwent CNB/VAB, and diagnosed with benign, DCIS and IDC by histology. Metabolome analysis was performed using CE–MS. Differential metabolites were then analyzed and evaluated with MetaboAnalyst 4.0.

Results

We measured 116-targeted metabolites involved in energy metabolism. Principal component analysis and unsupervised hierarchical analysis revealed a distinct metabolic signature unique to namely “pure” IDC samples, whereas that of DCIS was similar to benign samples. Pathway analysis unveiled the most affected pathways of the “pure” IDC metabotype, including “pyrimidine,” “alanine, aspartate, and glutamate” and “arginine and proline” pathways.

Conclusions

Our proof-of-concept study demonstrated that CE–MS-based CNB/VAB metabolome analysis is feasible for implementation in routine clinical settings. The most affected pathways in this study may contribute to improved breast cancer stratification and precision medicine.

Keywords

Metabolome analysis Breast cancer Needle breast biopsy CE–MS 

Notes

Acknowledgements

This work was supported by research Grants from the Astellas Foundation for Research on Metabolic Disorders.

Author contributions

NH-S and TI conceived the study. NH-S and TS contributed to the study design. NH-S, HT, MM, GW, YH, AS, TS, AS and TI carried out the sample collections. NH-S, MH and TS performed the data analysis. NH-S, MH and TI drafted the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

There are no conflict of interest in relation to this manuscript for any of the authors listed above.

Supplementary material

11306_2019_1610_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)
11306_2019_1610_MOESM2_ESM.pdf (50 kb)
Supplementary material 2 (PDF 50 kb)
11306_2019_1610_MOESM3_ESM.pdf (75 kb)
Supplementary material 3 (PDF 75 kb)
11306_2019_1610_MOESM4_ESM.pdf (37 kb)
Supplementary material 4 (PDF 37 kb)
11306_2019_1610_MOESM5_ESM.pdf (51 kb)
Supplementary material 5 (PDF 50 kb)
11306_2019_1610_MOESM6_ESM.pdf (1016 kb)
Supplementary material 6 (PDF 1015 kb)
11306_2019_1610_MOESM7_ESM.pdf (1.1 mb)
Supplementary material 7 (PDF 1121 kb)
11306_2019_1610_MOESM8_ESM.pdf (247 kb)
Supplementary material 8 (PDF 247 kb)
11306_2019_1610_MOESM9_ESM.pdf (98 kb)
Supplementary material 9 (PDF 97 kb)

References

  1. Aittokallio, T., & Schwikowski, B. (2006). Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics, 7(3), 243–255.  https://doi.org/10.1093/bib/bbl022.CrossRefPubMedGoogle Scholar
  2. Allred, D. C. (2010). Ductal carcinoma in situ: Terminology, classification, and natural history. Journal of the National Cancer Institute Monographs, 2010(41), 134–138.  https://doi.org/10.1093/jncimonographs/lgq035.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., & Melino, G. (2014). Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 39(4), 191–198.  https://doi.org/10.1016/j.tibs.2014.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown, K. K., Spinelli, J. B., Asara, J. M., & Toker, A. (2017). Adaptive reprogramming of de novopyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discovery, 7(4), 391–399.  https://doi.org/10.1158/2159-8290.CD-16-0611.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Casasent, A. K., Schalck, A., Gao, R., Sei, E., Long, A., Pangburn, W., et al. (2018). Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell, 172(1–2), 205–217.e12.  https://doi.org/10.1016/j.cell.2017.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chong, J., & Xia, J. (2018). MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics (Oxford, England), 34(24), 4313–4314.  https://doi.org/10.1093/bioinformatics/bty528.CrossRefGoogle Scholar
  7. Ehinger, J. K., Piel, S., Ford, R., Karlsson, M., Sjövall, F., Frostner, E. Å., et al. (2016). Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nature Communications, 7(1), 12317.  https://doi.org/10.1038/ncomms12317.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Erbas, B., Provenzano, E., Armes, J., & Gertig, D. (2006). The natural history of ductal carcinoma in situ of the breast: A review. Breast Cancer Research and Treatment, 97(2), 135–144.  https://doi.org/10.1007/s10549-005-9101-z.CrossRefPubMedGoogle Scholar
  9. Hirayama, A., Kami, K., Sugimoto, M., Sugawara, M., Toki, N., Onozuka, H., et al. (2009). Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 69(11), 4918–4925.  https://doi.org/10.1158/0008-5472.CAN-08-4806.CrossRefPubMedGoogle Scholar
  10. Islami, F., Siegel, R. L., & Jemal, A. (2017). Global cancer in women: Burden and trends. Cancer Epidemiology, Biomarkers and Prevention, 26(4), 444–457.  https://doi.org/10.1158/1055-9965.EPI-16-0858.CrossRefPubMedGoogle Scholar
  11. Kami, K., Fujimori, T., Sato, H., Sato, M., Yamamoto, H., Ohashi, Y., et al. (2013). Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics, 9(2), 444–453.  https://doi.org/10.1007/s11306-012-0452-2.CrossRefPubMedGoogle Scholar
  12. Kaste, S. C., Snyder, S. E., Metzger, M. L., Sandlund, J. T., Howard, S. C., Krasin, M., et al. (2017). Comparison of11C-methionine and18F-FDG PET/CT for staging and follow-up of pediatric lymphoma. Journal of Nuclear Medicine, 58(3), 419–424.  https://doi.org/10.2967/jnumed.116.178640.CrossRefPubMedGoogle Scholar
  13. Katz, S. J., Jagsi, R., & Morrow, M. (2018). Reducing overtreatment of cancer with precision medicine. JAMA, 319(11), 1091.  https://doi.org/10.1001/jama.2018.0018.CrossRefPubMedGoogle Scholar
  14. Koppenol, W. H., Bounds, P. L., & Dang, C. V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337.  https://doi.org/10.1038/nrc3038.CrossRefPubMedGoogle Scholar
  15. Kremer, J. C., Prudner, B. C., Lange, S. E. S., Bean, G. R., Schultze, M. B., Brashears, C. B., et al. (2017). Arginine deprivation inhibits the Warburg effect and upregulates glutamine anaplerosis and serine biosynthesis in ASS1-deficient cancers. Cell Reports, 18(4), 991–1004.  https://doi.org/10.1016/j.celrep.2016.12.077.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lane, A. N., & Fan, T. W. M. (2015). Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Research, 43(4), 2466–2485.  https://doi.org/10.1093/nar/gkv047.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Loayza-Puch, F., Rooijers, K., Buil, L. C. M., Zijlstra, J., Vrielink, J. F. O., Lopes, R., et al. (2016). Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature, 530(7591), 490–494.  https://doi.org/10.1038/nature16982.CrossRefPubMedGoogle Scholar
  18. Moriya, T., Kasami, M., Akiyama, F., Ichihara, S., Kurosumi, M., Tsuda, H., et al. (2000). A proposal for the histopathological diagnosis of ductal carcinoma in situ of the breast. Breast Cancer, 7(4), 321–325.CrossRefGoogle Scholar
  19. Ramautar, R., Somsen, G. W., & de Jong, G. J. (2016). CE-MS for metabolomics: Developments and applications in the period 2014-2016. Electrophoresis, 38(1), 190–202.  https://doi.org/10.1002/elps.201600370.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sato, K., Miyashita, M., Ishida, T., Suzuki, A., Tada, H., Watanabe, G., et al. (2016). Prognostic significance of the progesterone receptor status in Ki67-high and -low luminal B-like HER2-negative breast cancers. Breast Cancer, 23(2), 310–317.  https://doi.org/10.1007/s12282-014-0575-6.CrossRefPubMedGoogle Scholar
  21. Shah, C., Wobb, J., Manyam, B., Kundu, N., Arthur, D., Wazer, D., et al. (2016). Management of ductal carcinoma in situ of the breast. JAMA Oncology, 2(8), 1083–1088.  https://doi.org/10.1001/jamaoncol.2016.0525.CrossRefPubMedGoogle Scholar
  22. Soga, T., Ikeda, S., Ishikawa, T., Robert, M., & Nishioka, T. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. Journal of Biological Chemistry, 281(24), 16768–16776.  https://doi.org/10.1074/jbc.M601876200.CrossRefPubMedGoogle Scholar
  23. Soga, T., Soga, T., Ohashi, Y., Ohashi, Y., Ueno, Y., Ueno, Y., et al. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494.CrossRefGoogle Scholar
  24. Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15(7), 473–484.  https://doi.org/10.1038/nrd.2016.32.CrossRefPubMedGoogle Scholar
  25. Xia, J., & Sinelnikov, I. V. (2015). MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.  https://doi.org/10.1093/nar/gkv380.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760.  https://doi.org/10.1038/nprot.2011.319.CrossRefPubMedGoogle Scholar
  27. Yoon, H., Yoon, D., Yun, M., Choi, J. S., Park, V. Y., Kim, E.-K., et al. (2016). Metabolomics of breast cancer using high-resolution magic angle spinning magnetic resonance spectroscopy: Correlations with 18F-FDG Positron emission tomography-computed tomography, dynamic contrast-enhanced and diffusion-weighted imaging MRI. PLoS ONE, 11(7), e0159949.  https://doi.org/10.1371/journal.pone.0159949.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zheng, Z.-G., Xu, H., Suo, S.-S., Xu, X.-L., Ni, M.-W., Gu, L.-H., et al. (2016). The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Scientific Reports, 6(1), 1–12.  https://doi.org/10.1038/srep26093.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Narumi Harada-Shoji
    • 1
    Email author
  • Tomoyoshi Soga
    • 2
  • Hiroshi Tada
    • 1
  • Minoru Miyashita
    • 1
  • Mutsuo Harada
    • 3
  • Gou Watanabe
    • 1
  • Yohei Hamanaka
    • 1
  • Akiko Sato
    • 1
  • Takashi Suzuki
    • 4
  • Akihiko Suzuki
    • 5
  • Takanori Ishida
    • 1
  1. 1.Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Institute for Advanced BiosciencesKeio UniversityYamagataJapan
  3. 3.Department of Cardiovascular MedicineThe University of TokyoTokyoJapan
  4. 4.Department of Pathology and HistotechnologyTohoku University Graduate School of MedicineSendaiJapan
  5. 5.Department of Breast and Endocrine SurgeryTohoku Medical and Pharmaceutical UniversitySendaiJapan

Personalised recommendations