Advertisement

Metabolomics

, 15:143 | Cite as

Metabolomic identification of novel diagnostic biomarkers in ectopic pregnancy

  • Onur TurkogluEmail author
  • Ayse Citil
  • Ceren Katar
  • Ismail Mert
  • Praveen Kumar
  • Ali Yilmaz
  • Dilek S. Uygur
  • Salim Erkaya
  • Stewart F. Graham
  • Ray O. Bahado-Singh
Original Article

Abstract

Introduction

Ectopic pregnancy (EP) is a potentially life-threatening condition and early diagnosis still remains a challenge, causing a delay in management leading to tubal rupture.

Objectives

To identify putative plasma biomarkers for the detection of tubal EP and elucidate altered biochemical pathways in EP compared to intrauterine pregnancies.

Methods

This case–control study included prospective recruitment of 39 tubal EP cases and 89 early intrauterine pregnancy controls. Plasma samples were biochemically profiled using proton nuclear magnetic resonance spectroscopy (1H NMR). To avoid over-fitting, datasets were randomly divided into a discovery group (26 cases vs 60 controls) and a test group (13 cases and 29 controls). Logistic regression models were developed in the discovery group and validated in the independent test group. Area under the receiver operating characteristics curve (AUC), 95% confidence interval (CI), sensitivity, and specificity values were calculated.

Results

In total 13 of 43 (30.3%) metabolite concentrations were significantly altered in EP plasma (p < 0.05). Metabolomic profiling yielded significant separation between EP and controls (p < 0.05). Independent validation of a two-metabolite model consisting of lactate and acetate, achieved an AUC (95% CI) = 0.935 (0.843–1.000) with a sensitivity of 92.3% and specificity of 96.6%. The second metabolite model (d-glucose, pyruvate, acetoacetate) performed well with an AUC (95% CI) = 0.822 (0.657–0.988) and a sensitivity of 84.6% and specificity of 86.2%.

Conclusion

We report novel metabolomic biomarkers with a high accuracy for the detection of EP. Accurate biomarkers could potentially result in improved early diagnosis of tubal EP cases.

Keywords

Ectopic pregnancy Metabolomics Nuclear magnetic resonance spectroscopy Biomarker Metabolite 

Notes

Author contribution

OT supervised the experiment, manuscript writing and performed statistical data analysis; OT, AC, CK performed specimen collection; SFG supervised all experimental procedures; PK, AY performed the experiments and analyzed the raw data; RBS, SE, DU, IM supervised and designed the experiment and manuscript writing and all authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2019_1607_MOESM1_ESM.pdf (6.5 mb)
Supplementary material 1 (PDF 6656 kb)
11306_2019_1607_MOESM2_ESM.xlsx (69 kb)
Supplementary material 2 (XLSX 68 kb)

References

  1. Alexander, J. M., Rouse, D. J., Varner, E., & Austin, J. M., Jr. (1996). Treatment of the small unruptured ectopic pregnancy: A cost analysis of methotrexate versus laparoscopy. Obstetrics and Gynecology, 88(1), 123–127.  https://doi.org/10.1016/0029-7844(96)00086-5.CrossRefPubMedGoogle Scholar
  2. Alkatout, I., Honemeyer, U., Strauss, A., Tinelli, A., Malvasi, A., Jonat, W., et al. (2013). Clinical diagnosis and treatment of ectopic pregnancy. Obstetrical & Gynecological Survey, 68(8), 571–581.  https://doi.org/10.1097/OGX.0b013e31829cdbeb.CrossRefGoogle Scholar
  3. Atri, M., Leduc, C., Gillett, P., Bret, P. M., Reinhold, C., Kintzen, G., et al. (1996). Role of endovaginal sonography in the diagnosis and management of ectopic pregnancy. Radiographics, 16(4), 755–774.  https://doi.org/10.1148/radiographics.16.4.8835969; discussion 775.CrossRefPubMedGoogle Scholar
  4. Bahado-Singh, R. O., Akolekar, R., Chelliah, A., Mandal, R., Dong, E., Kruger, M., et al. (2013). Metabolomic analysis for first-trimester trisomy 18 detection. American Journal of Obstetrics and Gynecology, 209(1), 65e61–65e69.  https://doi.org/10.1016/j.ajog.2013.03.028.CrossRefGoogle Scholar
  5. Bahado-Singh, R. O., Syngelaki, A., Akolekar, R., Mandal, R., Bjondahl, T. C., Han, B., et al. (2015). Validation of metabolomic models for prediction of early-onset preeclampsia. American Journal of Obstetrics and Gynecology.  https://doi.org/10.1016/j.ajog.2015.06.044.CrossRefPubMedGoogle Scholar
  6. Barnhart, K. T., Fay, C. A., Suescum, M., Sammel, M. D., Appleby, D., Shaunik, A., et al. (2011a). Clinical factors affecting the accuracy of ultrasonography in symptomatic first-trimester pregnancy. Obstetrics and Gynecology, 117(2 Pt 1), 299–306.  https://doi.org/10.1097/AOG.0b013e3182050ed0.CrossRefPubMedGoogle Scholar
  7. Barnhart, K., van Mello, N. M., Bourne, T., Kirk, E., Van Calster, B., Bottomley, C., et al. (2011b). Pregnancy of unknown location: A consensus statement of nomenclature, definitions, and outcome. Fertility and Sterility, 95(3), 857–866.  https://doi.org/10.1016/j.fertnstert.2010.09.006.CrossRefPubMedGoogle Scholar
  8. Beer, L. A., Tang, H. Y., Sriswasdi, S., Barnhart, K. T., & Speicher, D. W. (2011). Systematic discovery of ectopic pregnancy serum biomarkers using 3-D protein profiling coupled with label-free quantitation. Journal of Proteome Research, 10(3), 1126–1138.  https://doi.org/10.1021/pr1008866.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Birkhahn, R. H., Gaeta, T. J., Leo, P. J., & Bove, J. J. (2000). The utility of maternal creatine kinase in the evaluation of ectopic pregnancy. American Journal of Emergency Medicine, 18(6), 695–697.  https://doi.org/10.1053/ajem.2000.7327.CrossRefPubMedGoogle Scholar
  10. Boschetti, E., & Righetti, P. G. (2008). The ProteoMiner in the proteomic arena: A non-depleting tool for discovering low-abundance species. Journal of Proteomics, 71(3), 255–264.  https://doi.org/10.1016/j.jprot.2008.05.002.CrossRefPubMedGoogle Scholar
  11. Bouyer, J., Coste, J., Fernandez, H., Pouly, J. L., & Job-Spira, N. (2002). Sites of ectopic pregnancy: A 10 year population-based study of 1800 cases. Human Reproduction, 17(12), 3224–3230.CrossRefGoogle Scholar
  12. Brown, J. K., Lauer, K. B., Ironmonger, E. L., Inglis, N. F., Bourne, T. H., Critchley, H. O., et al. (2013). Shotgun proteomics identifies serum fibronectin as a candidate diagnostic biomarker for inclusion in future multiplex tests for ectopic pregnancy. PLoS ONE, 8(6), e66974.  https://doi.org/10.1371/journal.pone.0066974.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Centers for Disease Control and Prevention. (1995). Ectopic pregnancy—United States, 1990–1992. MMWR. Morbidity and Mortality Weekly Report, 44(3), 46–48.Google Scholar
  14. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486–W494.  https://doi.org/10.1093/nar/gky310.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Connolly, A., Ryan, D. H., Stuebe, A. M., & Wolfe, H. M. (2013). Reevaluation of discriminatory and threshold levels for serum beta-hCG in early pregnancy. Obstetrics and Gynecology, 121(1), 65–70.  https://doi.org/10.1097/AOG.0b013e318278f421.CrossRefPubMedGoogle Scholar
  16. Daniel, Y., Geva, E., Lerner-Geva, L., Eshed-Englender, T., Gamzu, R., Lessing, J. B., et al. (1999). Levels of vascular endothelial growth factor are elevated in patients with ectopic pregnancy: Is this a novel marker? Fertility and Sterility, 72(6), 1013–1017.CrossRefGoogle Scholar
  17. Deng, L., Chang, D., Foshaug, R. R., Eisner, R., Tso, V. K., Wishart, D. S., et al. (2017). Development and validation of a high-throughput mass spectrometry based urine metabolomic test for the detection of colonic adenomatous polyps. Metabolites, 7(3), 32.CrossRefGoogle Scholar
  18. Dogra, V., Paspulati, R. M., & Bhatt, S. (2005). First trimester bleeding evaluation. Ultrasound Quarterly, 21(2), 69–85; quiz 149–150, 153–144.CrossRefGoogle Scholar
  19. Dominguez, F., Moreno-Moya, J. M., Lozoya, T., Romero, A., Martinez, S., Monterde, M., et al. (2014). Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS ONE, 9(7), e102185.  https://doi.org/10.1371/journal.pone.0102185.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Doubilet, P. M., Benson, C. B., Bourne, T., Blaivas, M., Society of Radiologists in Ultrasound Multispecialty Panel on Early First Trimester Diagnosis of Miscarriage and Exclusion of a Viable Intrauterine Pregnancy, et al. (2013). Diagnostic criteria for nonviable pregnancy early in the first trimester. New England Journal of Medicine, 369(15), 1443–1451.  https://doi.org/10.1056/nejmra1302417.CrossRefPubMedGoogle Scholar
  21. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387–426.  https://doi.org/10.1039/b906712b.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ebner, F., Varga, D., Sorg, F., Vorwerk, E., Schochter, F., Janni, W., et al. (2015). Treatment cost evaluation of extrauterine gravidity: A literature review of medical and surgical treatment costs. Archives of Gynecology and Obstetrics, 291(3), 493–498.  https://doi.org/10.1007/s00404-014-3488-x.CrossRefPubMedGoogle Scholar
  23. Farquhar, C. M. (2005). Ectopic pregnancy. Lancet, 366(9485), 583–591.  https://doi.org/10.1016/S0140-6736(05)67103-6.CrossRefPubMedGoogle Scholar
  24. Fei, H., Hou, J., Wu, Z., Zhang, L., Zhao, H., Dong, X., et al. (2016). Plasma metabolomic profile and potential biomarkers for missed abortion. Biomedical Chromatography, 30(12), 1942–1952.CrossRefGoogle Scholar
  25. Florio, P., Severi, F. M., Bocchi, C., Luisi, S., Mazzini, M., Danero, S., et al. (2007). Single serum activin a testing to predict ectopic pregnancy. Journal of Clinical Endocrinology and Metabolism, 92(5), 1748–1753.  https://doi.org/10.1210/jc.2006-2188.CrossRefPubMedGoogle Scholar
  26. Garcia-Closas, M., Vermeulen, R., Cox, D., Lan, Q., Caporaso, N. E., & Rothman, N. (2011). Population-based study designs in molecular epidemiology. IARC Scientific Publications, 163, 241–259.Google Scholar
  27. Gebeh, A. K., Willets, J. M., Marczylo, E. L., Taylor, A. H., & Konje, J. C. (2012). Ectopic pregnancy is associated with high anandamide levels and aberrant expression of FAAH and CB1 in fallopian tubes. Journal of Clinical Endocrinology and Metabolism, 97(8), 2827–2835.  https://doi.org/10.1210/jc.2012-1780.CrossRefPubMedGoogle Scholar
  28. Gerton, G. L., Fan, X. J., Chittams, J., Sammel, M., Hummel, A., Strauss, J. F., et al. (2004). A serum proteomics approach to the diagnosis of ectopic pregnancy. Annals of the New York Academy of Sciences, 1022, 306–316.  https://doi.org/10.1196/annals.1318.046.CrossRefPubMedGoogle Scholar
  29. Goyaux, N., Leke, R., Keita, N., & Thonneau, P. (2003). Ectopic pregnancy in African developing countries. Acta Obstetricia et Gynecologica Scandinavica, 82(4), 305–312.CrossRefGoogle Scholar
  30. Hennessy, S., Bilker, W. B., Berlin, J. A., & Strom, B. L. (1999). Factors influencing the optimal control-to-case ratio in matched case–control studies. American Journal of Epidemiology, 149(2), 195–197.  https://doi.org/10.1093/oxfordjournals.aje.a009786.CrossRefPubMedGoogle Scholar
  31. Horne, A. W., Brown, J. K., Tong, S., & Kaitu’u-Lino, T. (2012). Evaluation of ADAM-12 as a diagnostic biomarker of ectopic pregnancy in women with a pregnancy of unknown location. PLoS ONE, 7(8), e41442.  https://doi.org/10.1371/journal.pone.0041442.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Horne, A. W., Phillips, J. A., 3rd, Kane, N., Lourenco, P. C., McDonald, S. E., Williams, A. R., et al. (2008). CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy. PLoS ONE, 3(12), e3969.  https://doi.org/10.1371/journal.pone.0003969.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kilberg, M. S., Terada, N., & Shan, J. (2016). Influence of amino acid metabolism on embryonic stem cell function and differentiation. Advances in Nutrition, 7(4), 780S–789S.  https://doi.org/10.3945/an.115.011031.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kokawa, K., Shikone, T., & Nakano, R. (1998). Apoptosis in human chorionic villi and decidua in normal and ectopic pregnancy. Molecular Human Reproduction, 4(1), 87–91.CrossRefGoogle Scholar
  35. Kucera, E., Konig, F., Tangl, S., Grosschmidt, K., Kainz, C., & Sliutz, G. (2001). Bcl-2 expression as a novel immunohistochemical marker for ruptured tubal ectopic pregnancy. Human Reproduction, 16(6), 1286–1290.CrossRefGoogle Scholar
  36. Lam, P. M., Briton-Jones, C., Cheung, C. K., Leung, S. W., Cheung, L. P., & Haines, C. (2004). Increased messenger RNA expression of vascular endothelial growth factor and its receptors in the implantation site of the human oviduct with ectopic gestation. Fertility and Sterility, 82(3), 686–690.  https://doi.org/10.1016/j.fertnstert.2003.12.052.CrossRefPubMedGoogle Scholar
  37. Landsberg, A., Sharma, A., Gibson, I. W., Rush, D., Wishart, D. S., & Blydt-Hansen, T. D. (2018). Non-invasive staging of chronic kidney allograft damage using urine metabolomic profiling. Pediatric Transplantation, 22(5), e13226.  https://doi.org/10.1111/petr.13226.CrossRefPubMedGoogle Scholar
  38. Li, X., Yin, M., Gu, J., Hou, Y., Tian, F., & Sun, F. (2018). Metabolomic profiling of plasma samples from women with recurrent spontaneous abortion. Medical Science Monitor, 24, 4038–4045.  https://doi.org/10.12659/MSM.907653.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luthra, G., Vuckovic, I., Bangdiwala, A., Gray, H., Redmon, J. B., Barrett, E. S., et al. (2018). First and second trimester urinary metabolic profiles and fetal growth restriction: An exploratory nested case–control study within the infant development and environment study. BMC Pregnancy Childbirth, 18(1), 48.  https://doi.org/10.1186/s12884-018-1674-8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Markley, J. L., Bruschweiler, R., Edison, A. S., Eghbalnia, H. R., Powers, R., Raftery, D., et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34–40.  https://doi.org/10.1016/j.copbio.2016.08.001.CrossRefPubMedGoogle Scholar
  41. Members, M. S. I. B., Sansone, S. A., Fan, T., Goodacre, R., Griffin, J. L., Hardy, N. W., et al. (2007). The metabolomics standards initiative. Nature Biotechnology, 25(8), 846–848.  https://doi.org/10.1038/nbt0807-846b.CrossRefGoogle Scholar
  42. Mercier, P., Lewis, M., Chang, D., Baker, D., & Wishart, D. (2011). Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. Journal of Biomolecular NMR, 49(3–4), 307–323.  https://doi.org/10.1007/s10858-011-9480-x.CrossRefPubMedGoogle Scholar
  43. Mol, F., Mol, B. W., Ankum, W. M., van der Veen, F., & Hajenius, P. J. (2008). Current evidence on surgery, systemic methotrexate and expectant management in the treatment of tubal ectopic pregnancy: A systematic review and meta-analysis. Human Reproduction Update, 14(4), 309–319.  https://doi.org/10.1093/humupd/dmn012.CrossRefPubMedGoogle Scholar
  44. Nicholson, J. K., & Wilson, I. D. (2003). Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2(8), 668–676.  https://doi.org/10.1038/nrd1157.CrossRefPubMedGoogle Scholar
  45. Rana, P., Kazmi, I., Singh, R., Afzal, M., Al-Abbasi, F. A., Aseeri, A., et al. (2013). Ectopic pregnancy: A review. Archives of Gynecology and Obstetrics, 288(4), 747–757.  https://doi.org/10.1007/s00404-013-2929-2.CrossRefPubMedGoogle Scholar
  46. Rausch, M. E., & Barnhart, K. T. (2012). Serum biomarkers for detecting ectopic pregnancy. Clinical Obstetrics and Gynecology, 55(2), 418–423.  https://doi.org/10.1097/GRF.0b013e31825109f6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rausch, M. E., Sammel, M. D., Takacs, P., Chung, K., Shaunik, A., & Barnhart, K. T. (2011). Development of a multiple marker test for ectopic pregnancy. Obstetrics and Gynecology, 117(3), 573–582.  https://doi.org/10.1097/AOG.0b013e31820b3c61.CrossRefPubMedGoogle Scholar
  48. Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 10(5), e0124219.  https://doi.org/10.1371/journal.pone.0124219.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Reo, N. V. (2002). NMR-based metabolomics. Drug and Chemical Toxicology, 25(4), 375–382.  https://doi.org/10.1081/DCT-120014789.CrossRefPubMedGoogle Scholar
  50. Soriano, D., Hugol, D., Quang, N. T., & Darai, E. (2003). Serum concentrations of interleukin-2R (IL-2R), IL-6, IL-8, and tumor necrosis factor alpha in patients with ectopic pregnancy. Fertility and Sterility, 79(4), 975–980.CrossRefGoogle Scholar
  51. Spicer, R. A., Salek, R., & Steinbeck, C. (2017). Compliance with minimum information guidelines in public metabolomics repositories. Scientific Data, 4, 170137.  https://doi.org/10.1038/sdata.2017.137.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.  https://doi.org/10.2307/2346178.CrossRefGoogle Scholar
  53. Turkoglu, O., Zeb, A., Graham, S., Szyperski, T., Szender, J. B., Odunsi, K., et al. (2016). Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics, 12(4), 60.CrossRefGoogle Scholar
  54. Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O., & McKnight, S. L. (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939), 435–439.  https://doi.org/10.1126/science.1173288.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang, L., Feng, Y., Zou, S., Brannstrom, M., He, L., Billig, H., et al. (2013). Linking DNA methylation to the onset of human tubal ectopic pregnancy. American Journal of Translational Research, 5(2), 116–125.PubMedPubMedCentralGoogle Scholar
  56. Wieser, V., Moschen, A. R., & Tilg, H. (2013). Inflammation, cytokines and insulin resistance: A clinical perspective. Archivum immunolgiae et therapiae experimentalis, 61(2), 119–125.  https://doi.org/10.1007/s00005-012-0210-1.CrossRefGoogle Scholar
  57. Wishart, D. S. (2012). Chapter 3: Small molecules and disease. PLOS Computational Biology, 8(12), e1002805.  https://doi.org/10.1371/journal.pcbi.1002805.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9(2), 280–299.  https://doi.org/10.1007/s11306-012-0482-9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(W1), W127–W133.  https://doi.org/10.1093/nar/gks374.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Onur Turkoglu
    • 1
    • 4
    Email author
  • Ayse Citil
    • 2
  • Ceren Katar
    • 2
  • Ismail Mert
    • 3
  • Praveen Kumar
    • 1
  • Ali Yilmaz
    • 1
  • Dilek S. Uygur
    • 2
  • Salim Erkaya
    • 2
  • Stewart F. Graham
    • 1
    • 4
  • Ray O. Bahado-Singh
    • 1
    • 4
  1. 1.Department of Obstetrics and GynecologyBeaumont Health SystemRoyal OakUSA
  2. 2.Department of Obstetrics and GynecologyZekai Tahir Burak Women’s Health Education and Research HospitalAnkaraTurkey
  3. 3.Division of Gynecological Oncology, Department of Obstetrics and GynecologyMayo ClinicRochesterUSA
  4. 4.Oakland University-William Beaumont School of MedicineRochesterUSA

Personalised recommendations