Advertisement

Metabolomics

, 15:140 | Cite as

Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism

  • Brandon D. Kayser
  • Edi Prifti
  • Marie Lhomme
  • Eugeni Belda
  • Maria-Carlota Dao
  • Judith Aron-Wisnewsky
  • MICRO-Obes Consortium
  • Anatol Kontush
  • Jean-Daniel Zucker
  • Salwa W. Rizkalla
  • Isabelle Dugail
  • Karine ClémentEmail author
Original Article

Abstract

Introduction

Low gut microbiome richness is associated with dyslipidemia and insulin resistance, and ceramides and other sphingolipids are implicated in the development of diabetes.

Objectives

Determine whether circulating sphingolipids, particularly ceramides, are associated with alterations in the gut microbiome among obese patients with increased diabetes risk.

Methods

This was a cross-sectional and longitudinal retrospective analysis of a dietary/weight loss intervention. Fasted serum was collected from 49 participants (41 women) and analyzed by HPLC–MS/MS to quantify 45 sphingolipids. Shotgun metagenomic sequencing of stool was performed to profile the gut microbiome.

Results

Confirming the link to deteriorated glucose homeostasis, serum ceramides were positively correlated with fasting glucose, but inversely correlated with fasting and OGTT-derived measures of insulin sensitivity and β-cell function. Significant associations with gut dysbiosis were demonstrated, with SM and ceramides being inversely correlated with gene richness. Ceramides with fatty acid chain lengths of 20–24 carbons were the most associated with low richness. Diet-induced weight loss, which improved gene richness, decreased most sphingolipids. Thirty-one MGS, mostly corresponding to unidentified bacteria species, were inversely correlated with ceramides, including a number of Bifidobacterium and Methanobrevibacter smithii. Higher ceramide levels were also associated with increased metagenomic modules for lipopolysaccharide synthesis and flagellan synthesis, two pathogen-associated molecular patterns, and decreased enrichment of genes involved in methanogenesis and bile acid metabolism.

Conclusion

This study identifies an association between gut microbiota richness, ceramides, and diabetes risk in overweight/obese humans, and suggests that the gut microbiota may contribute to dysregulation of lipid metabolism in metabolic disorders.

Keywords

Microbiome Ceramides Sphingolipids Endotoxin Glucose metabolism 

Notes

Acknowledgements

Thank you to Sophie Gougis, Soraya Fellahi (Dept. of Biochemistry and Hormonology, Tenon hospital), Dominique Bonnefont-Rousselot and Randa Bittar (Department of Metabolic Biochemistry, Pitié-Salpêtrière hospital) for their contributions to data collection and analysis. We would also like to thank the nurses and technicians, and of course, the patients themselves for their invaluable contribution.

MICRO-Obes consortium: Aurélie Cotillard; Sean P Kennedy; Nicolas Pons; Emmanuelle Le Chatelier; Mathieu Almeida; Benoit Quinquis; Nathalie Galleron; Jean-Michel Batto; Pierre Renault; Stanislav Dusko Ehrlich; Hervé Blottière; Marion Leclerc; Tomas de Wouters; Patricia Lepage, Joel Doré.

Author contributions

BDK conceived the research question, performed the analyses, and wrote the manuscript. ML performed the lipidomics analysis and reviewed the data. EP and EB implemented the metagenomics pipeline and bioinformatics. MCD and JAW assisted in data collection, reviewed the data, and carefully reviewed the manuscript. AK supervised the lipidomics analysis and reviewed the data. SWR designed and coordinated the clinical study, and reviewed the data. ID supervised the research project and contributed to the research questions and manuscript. KC designed the study and supervised clinical and metagenomics analyses, contributed to the research question, and wrote the manuscript.

Funding

This work was supported by Agence Nationale de la Recherche (ANR MICRO-Obes), KOT-Ceprodi and the association Foundation Coeur et Arteres (clinical investigation) as well as European Union’s Seventh Framework Program Metacardis under grant agreement HEALTH-F4-2012-305312 and Horizon 2020 Framework Program (EPoS, grant #634413). The European Foundation for the Study of Diabetes Albert Renold travel fellowship have contributed to the work of BDK and Danone Research to the work of MCD and KC.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This study was initiated when the investigators held positions at Hôtel-Dieu Hospital, therefore the study was authorized by the Ethical Committee of Hôtel-Dieu Hospital in Paris, France in 2008 under the number 0811792. All procedures were performed in accordance with ethical and institutional standards, and all participants provided written informed consent. The study is registered on clinicaltrials.gov: NCT01314690.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2019_1596_MOESM1_ESM.pdf (57 kb)
Supplementary material 1 (PDF 56 kb)
11306_2019_1596_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 62 kb)
11306_2019_1596_MOESM3_ESM.pdf (135 kb)
Online resource 3. Spearman correlations between sphingolipids and clinical variables. *P<0.05, **P<0.01, ***P<0.001. % BF = Percent body fat, AdipoDia = adipocyte diameter, TG = fasting triglycerides, NEFA = non-esterified free fatty acids, sCD14 = soluble CD14, OGTT-60 and OGTT-120 = plasma glucose during OGTT at 60 and 120 minutes, respectively, ISSI-2 = insulin-secretion-sensitivity-index-2. DHCer are labeled by their chemical structure Cer(d18:0). (PDF 134 kb)
11306_2019_1596_MOESM4_ESM.pdf (62 kb)
Online resource 4. Fold change (on log base 2 scale) of each bile acid gene between baseline and weeks 6 and 12, stratified by baseline gene richness. Prevalence is number of metagenome samples (subject 1 at baseline is a different sample from subject 1 at week 6) with abundance greater than 0. Statistical significance was determined by paired Wilcoxon tests with *P<0.05 and **P<0.01. Fold-change of means was calculated because too many zeros were present in some strata to calculate fold-change (resulted in infinity or undefined ratios). (PDF 61 kb)

References

  1. Antuna-Puente, B., Disse, E., Faraj, M., Lavoie, M. E., Laville, M., Rabasa-Lhoret, R., et al. (2009). Evaluation of insulin sensitivity with a new lipid-based index in non-diabetic postmenopausal overweight and obese women before and after a weight loss intervention. European Journal of Endocrinology, 161, 51–56.PubMedCrossRefGoogle Scholar
  2. Aron-Wisnewsky, J., Tordjman, J., Poitou, C., Darakhshan, F., Hugol, D., Basdevant, A., et al. (2009). Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. Journal of Clinical Endocrinology and Metabolism, 94, 4619–4623.PubMedCrossRefGoogle Scholar
  3. Boon, J., Hoy, A. J., Stark, R., Brown, R. D., Meex, R. C., Henstridge, D. C., et al. (2013). Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes, 62, 401–410.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Camont, L., Lhomme, M., Rached, F., Le Goff, W., Nègre-Salvayre, A., Salvayre, R., et al. (2013). Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2715–2723.PubMedCrossRefGoogle Scholar
  5. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007a). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772.PubMedCrossRefGoogle Scholar
  6. Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., et al. (2007b). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50, 2374–2383.PubMedCrossRefGoogle Scholar
  7. Chaurasia, B., & Summers, S. A. (2015). Ceramides—Lipotoxic inducers of metabolic disorders. Trends in Endocrinology and Metabolism, 26, 538–550.PubMedCrossRefGoogle Scholar
  8. Clemente, J. C., Pehrsson, E. C., Blaser, M. J., Sandhu, K., Gao, Z., Wang, B., et al. (2015). The microbiome of uncontacted Amerindians. Science Advances, 1, e1500183.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cotillard, A., Kennedy, S. P., Kong, L. C., Prifti, E., Pons, N., Le Chatelier, E., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588.CrossRefGoogle Scholar
  10. D’Addio, F., La Rosa, S., Maestroni, A., Jung, P., Orsenigo, E., Ben Nasr, N., et al. (2015). Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy. Cell Stem Cell, 17, 486–498.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Glass, C. K., & Olefsky, J. M. (2012). Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metabolism, 15, 635–645.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Green, C. L., Mitchell, S. E., Derous, D., Wang, Y., Chen, L., Han, J. J., et al. (2017). The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell, 16, 529–540.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Haus, J. M., Kashyap, S. R., Kasumov, T., Zhang, R., Kelly, K. R., DeFronzo, R. A., et al. (2009). Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes, 58, 337–343.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Eugene, C. Y., et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410(6832), 1099–1103.PubMedCrossRefGoogle Scholar
  16. Holland, W. L., Bikman, B. T., Wang, L. P., Yuguang, G., Sargent, K. M., Bulchand, S., et al. (2011). Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. Journal of Clinical Investigation, 121, 1858–1870.PubMedCrossRefGoogle Scholar
  17. Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R. G., Krausz, K. W., et al. (2015). Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 125, 386–402.PubMedCrossRefGoogle Scholar
  18. Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C. J., Fagerberg, B., et al. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103.PubMedCrossRefGoogle Scholar
  19. Katz, A., Nambi, S. S., Mather, K., Baron, A. D., et al. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. The Journal of Clinical Endocrinology & Metabolism, 85(7), 2402–2410.CrossRefGoogle Scholar
  20. Kong, L. C., Holmes, B. A., Cotillard, A., Habi-Rachedi, F., Brazeilles, R., Gougis, S., et al. (2014). Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS ONE, 9, e109434.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., et al. (2016). Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. European Heart Journal, 37, 1967–1976.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., et al. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546.PubMedCrossRefGoogle Scholar
  23. Lepage, P., Häsler, R., Spehlmann, M. E., Rehman, A., Zvirbliene, A., Begun, A., et al. (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141, 227–236.PubMedCrossRefGoogle Scholar
  24. Levy, M., & Futerman, A. H. (2010). Mammalian ceramide synthases. IUBMB Life, 62(5), 347–356.PubMedPubMedCentralGoogle Scholar
  25. Lupi, R., Dotta, F., Marselli, L., Del Guerra, S., Masini, M., Santangelo, C., et al. (2002). Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes, 51, 1437–1442.CrossRefGoogle Scholar
  26. Markle, J. G., Frank, D. N., Mortin-Toth, S., Robertson, C. E., Feazel, L. M., Rolle-Kampczyk, U., et al. (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 339, 1084–1088.PubMedCrossRefGoogle Scholar
  27. Matsuda, M., & DeFronzo, R. A. (1999). Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care, 22, 1462–1470.CrossRefGoogle Scholar
  28. Meikle, P. J., Wong, G., Barlow, C. K., Weir, J. M., Greeve, M. A., MacIntosh, G. L., et al. (2013). Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE, 8, e74341.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Memon, R. A., Holleran, W. M., Moser, A. H., Seki, T., Uchida, Y., Fuller, J., et al. (1998). Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1257–1265.PubMedCrossRefGoogle Scholar
  30. Montgomery, M. K., Brown, S. H., Lim, X. Y., Fiveash, C. E., Osborne, B., Bentley, N. L., et al. (2016). Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species. Biochimica et Biophysica Acta, 1861, 1828–1839.PubMedCrossRefGoogle Scholar
  31. Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., et al. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 32, 822–828.PubMedCrossRefGoogle Scholar
  32. Png, C. W., Lindén, S. K., Gilshenan, K. S., Zoetendal, E. G., McSweeney, C. S., Sly, L. I., et al. (2010). Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. American Journal of Gastroenterology, 105, 2420–2428.PubMedCrossRefGoogle Scholar
  33. Prifti, E., Chatelier, E. L., Pons, N., Almeida, M., Leonard, P., Batto, J.M, et al. (2013). MetaOMineR: A fine-tuned pipeline for whole metagenomic data analyses. In 4th International Conference on Human Microbiome Congress.Google Scholar
  34. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.PubMedCrossRefGoogle Scholar
  35. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., et al. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64.PubMedCrossRefGoogle Scholar
  37. Raichur, S., Wang, S. T., Chan, P. W., Li, Y., Ching, J., Chaurasia, B., et al. (2014). CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metabolism, 20, 687–695.PubMedCrossRefGoogle Scholar
  38. Retnakaran, R., Qi, Y., Goran, M. I., & Hamilton, J. K. (2009). Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabetic Medicine, 26, 1198–1203.PubMedCrossRefGoogle Scholar
  39. Retnakaran, R., Shen, S., Hanley, A. J., Vuksan, V., Hamilton, J. K., & Zinman, B. (2008). Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring), 16, 1901–1907.CrossRefGoogle Scholar
  40. Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214.PubMedCrossRefGoogle Scholar
  41. Rizkalla, S. W., Prifti, E., Cotillard, A., Pelloux, V., Rouault, C., Allouche, R., et al. (2012). Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: A randomized controlled trial. American Journal of Clinical Nutrition, 95, 49–63.PubMedCrossRefGoogle Scholar
  42. Sakata, A., Ochiai, T., Shimeno, H., Hikishima, S., Yokomatsu, T., Shibuya, S., et al. (2007). Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology, 122, 54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Shui, G., Lam, S. M., Stebbins, J., Kusunoki, J., Duan, X., Li, B., et al. (2013). Polar lipid derangements in type 2 diabetes mellitus: Potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics, 9, 786–799.CrossRefGoogle Scholar
  44. Stratford, S., Hoehn, K. L., Liu, F., & Summers, S. A. (2004). Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. Journal of Biological Chemistry, 279, 36608–36615.PubMedCrossRefGoogle Scholar
  45. Summers, S. A. (2018). Could ceramides become the new cholesterol. Cell Metabolism, 27, 276–280.PubMedCrossRefGoogle Scholar
  46. Tremaroli, V., Karlsson, F., Werling, M., Ståhlman, M., Kovatcheva-Datchary, P., Olbers, T., et al. (2015). Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metabolism, 22, 228–238.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.PubMedCrossRefGoogle Scholar
  48. Turpin, S. M., Nicholls, H. T., Willmes, D. M., Mourier, A., Brodesser, S., Wunderlich, C. M., et al. (2014). Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metabolism, 20, 678–686.PubMedCrossRefGoogle Scholar
  49. Wallace, T. M., Levy, J. C., & Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care, 27, 1487–1495.CrossRefGoogle Scholar
  50. Weir, J. M., Wong, G., Barlow, C. K., Greeve, M. A., Kowalczyk, A., Almasy, L., et al. (2013). Plasma lipid profiling in a large population-based cohort. Journal of Lipid Research, 54, 2898–2908.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wigger, L., Cruciani-Guglielmacci, C., Nicolas, A., Denom, J., Fernandez, N., Fumeron, F., et al. (2017). Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Reports, 18, 2269–2279.PubMedCrossRefGoogle Scholar
  52. Xie, C., Jiang, C., Shi, J., Gao, X., Sun, D., Sun, L., et al. (2017). An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes, 66, 613–626.PubMedCrossRefGoogle Scholar
  53. Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics, 15, 642–656.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Brandon D. Kayser
    • 1
    • 2
  • Edi Prifti
    • 2
    • 5
  • Marie Lhomme
    • 2
  • Eugeni Belda
    • 2
  • Maria-Carlota Dao
    • 1
    • 2
  • Judith Aron-Wisnewsky
    • 1
    • 3
  • MICRO-Obes Consortium
  • Anatol Kontush
    • 4
  • Jean-Daniel Zucker
    • 5
  • Salwa W. Rizkalla
    • 1
    • 2
  • Isabelle Dugail
    • 1
  • Karine Clément
    • 1
    • 3
    Email author
  1. 1.Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches Research Unit (NutriOmics)ParisFrance
  2. 2.Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière HospitalParisFrance
  3. 3.Assistance-Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, CRNH Ile de FranceParisFrance
  4. 4.Sorbonne Université, INSERM, UMRS 1166, Dyslipidemia, Inflammation, and Atherosclerosis TeamParisFrance
  5. 5.Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des SystèmesParisFrance

Personalised recommendations