, 15:82 | Cite as

Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients

  • Mai Yamamoto
  • Maria Ines Pinto-Sanchez
  • Premysl Bercik
  • Philip Britz-McKibbinEmail author
Original Article



Irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal (GI) disorder in developed countries, is characterized by chronic abdominal pain, and altered bowel habits.


Accurate and timely diagnosis is challenging as it relies on symptoms and an evolving set of exclusion criteria to distinguish it from other related GI disorders reflecting a complex etiology that remains poorly understood. Herein, nontargeted metabolite profiling of repeat urine specimens collected from a cohort of IBS patients (n = 42) was compared to healthy controls (n = 20) to gain insights into the underlying pathophysiology.


An integrated data workflow for characterization of the urine metabolome with stringent quality control was developed to authenticate reliably measured (CV < 30%) and frequently detected (> 75%) metabolites using multisegment injection-capillary electrophoresis-mass spectrometry. Complementary statistical methods were then used to rank differentially excreted urinary metabolites after normalization to osmolality that were subsequently identified by high resolution tandem mass spectrometry and their electrophoretic migration behavior.


Our work revealed ten consistently elevated urinary metabolites in repeat samples collected from IBS patients at two different time points (q < 0.05 after age and Benjamini-Hochberg/FDR adjustment), which were associated with greater collagen degradation and intestinal mucosal turn-over processes likely due to low-grade inflammation. IBS-specific metabolites identified in urine included a series of hydroxylysine metabolites (O-glycosylgalactosyl-hydroxylysine, O-galactosyl-hydroxylysine, lysine), mannopyranosy-l-tryptophan, imidazole propionate, glutamine, serine, ornithine, dimethylglycine and dimethylguanosine. A major limitation in this retrospective case-control study was significant co-morbidity of IBS patients with other illnesses, including depression and prescribed medications as compared to healthy controls.


This work provides new mechanistic insights into the pathophysiology of IBS while also offering a convenient way to monitor patient disease progression and treatment responses to therapy based on a panel of urinary metabolites that avoids invasive blood sampling, colonoscopy and/or tissue biopsies.

Graphical Abstract


Metabolomics Irritable bowel syndrome Urine Biomarkers Mechanisms 



P.B.M. acknowledges funding support from the Natural Sciences and Engineering Research Council of Canada, Genome Canada, and McMaster University. P.B. also acknowledges support of a Foundation Grant from the Canadian Institutes of Health Research. We also acknowledge kind support from David Arndt, Zachary Budinski and David S. Wishart at the University Alberta with their assistance in uploading MS/MS spectra for urinary metabolites onto HMDB ( identified in this work.

Author contributions

MY prepared and analyzed all urine samples and conducted data pre-processing and final statistical analysis under the supervision of PBM. MY also wrote the initial draft of the manuscript with final edits performed by PBM. MIP-S and PB designed the study, recruited participants, collected patient urine samples and also provided feedback on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the Hamilton Integrated Research Ethics Board at McMaster University (REB Project #3992).

Informed consent

Informed consent was obtained from all individual participants included in this study.

Supplementary material

11306_2019_1543_MOESM1_ESM.xlsx (217 kb)
Supplementary material 1 (XLSX 216 kb)
11306_2019_1543_MOESM2_ESM.xlsx (235 kb)
Supplementary material 2 (XLSX 234 kb)
11306_2019_1543_MOESM3_ESM.pdf (1.6 mb)
Supplementary material 3 (PDF 1621 kb)


  1. Abdalla, M. I., Sandler, R. S., Kappelman, M. D., Martin, C. F., Chen, W., Anton, K., et al. (2017). Prevalence and impact of inflammatory bowel disease—irritable bowel syndrome on patient-reported outcomes in CCFA partners. Inflammatory Bowel Diseases, 23, 325–331.PubMedPubMedCentralGoogle Scholar
  2. Ahmed, I., Greenwood, R., Costello, B. D. L., Ratcliffe, N. M., & Probert, C. S. (2013). An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS ONE, 8, e58204.PubMedPubMedCentralGoogle Scholar
  3. Azpiroz, F., Bouin, M., Camilleri, M., Mayer, E. A., Poitras, P., Serra, J., et al. (2007). Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterology and Motility, 19, 62–88.PubMedPubMedCentralGoogle Scholar
  4. Baranska, A., Mujagic, Z., Smolinska, A., Dallinga, J. W., Jonkers, D. M. A. E., Tigchelaar, E. F., et al. (2016). Volatile organic compounds in breath as markers for irritable bowel syndrome: A metabolomic approach. Alimentary Pharmacology & Therapeutics, 44, 45–56.Google Scholar
  5. Bateman, J. F., Mascara, T., Chan, D., & Cole, W. G. (1984). Abnormal type I collagen metabolism by cultured fibroblasts in lethal perinatal osteogenesis imperfecta. Biochemical Journal, 217, 103–115.PubMedPubMedCentralGoogle Scholar
  6. Bercik, P., Verdú, E. F., Foster, J. A., Lu, J., Scharringa, A., Kean, I., et al. (2009). Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 296, R587–R594.PubMedPubMedCentralGoogle Scholar
  7. Bockenhauer, D., & Aitkenhead, H. (2011). The kidney speaks: interpreting urinary sodium and osmolality. Archives of Disease in Childhood, 96, 223–227.PubMedPubMedCentralGoogle Scholar
  8. Böhning, D., Böhning, W., Guha, N., Cowan, D. A., Sönksen, P. H., & Holt, R. I. G. (2016). Statistical methodology for age-adjustment of the GH-2000 score detecting growth hormone misuse. BMC Medical Research Methodology, 16, 147.PubMedPubMedCentralGoogle Scholar
  9. Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013). The human urine metabolome. PLoS ONE, 8, e73076.PubMedPubMedCentralGoogle Scholar
  10. Bowen, B. P., & Northen, T. R. (2010). Dealing with the unknown: Metabolomics and metabolite atlases. Journal of the American Society for Mass Spectrometry, 21, 1471–1476.PubMedPubMedCentralGoogle Scholar
  11. Brunius, C., Shi, L., & Landberg, R. (2016). Large-scale untargeted LC-MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction. Metabolomics, 12, 173.PubMedPubMedCentralGoogle Scholar
  12. Camilleri, M., Shin, A., Busciglio, I., Carlson, P., Acosta, A., Bharucha, A. E., et al. (2014). Validating biomarkers of treatable mechanisms in irritable bowel syndrome. Neurogastroenterology and Motility, 26, 1677–1685.PubMedPubMedCentralGoogle Scholar
  13. Carrieri, M., Trevisan, A., & Bartolucci, G. B. (2000). Adjustment to concentration-dilution of spot urine samples: Correlation between specific gravity and creatinine. International Archives of Occupational and Environmental Health, 74, 63–67.Google Scholar
  14. Chadha, V., Garg, U., & Alon, U. S. (2001). Measurement of urinary concentration: A critical appraisal of methodologies. Pediatric Nephrology, 16, 374–382.PubMedPubMedCentralGoogle Scholar
  15. Changhyun, L., et al. (2017). The increased level of depression and anxiety in irritable bowel syndrome patients compared with healthy controls: Systematic review and meta-analysis. Journal of Neurogastroenterology and Motility, 23, 349–362.Google Scholar
  16. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.PubMedPubMedCentralGoogle Scholar
  17. Cleare, A., Pariante, C. M., Young, A. H., Anderson, I. M., Christmas, D., Cowen, P. J., et al. (2015). Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. Journal of Psychopharmacology, 29, 459–525.PubMedPubMedCentralGoogle Scholar
  18. Cunningham, L. W., Ford, J. D., & Segrest, J. P. (1967). The isolation of identical hydroxylysyl glycosides from hydrolysates of soluble collagen and from human urine. Journal of Biological Chemistry, 242, 2570–2571.PubMedPubMedCentralGoogle Scholar
  19. Dahl, H., Stephanson, N., Beck, O., & Helander, A. (2002). Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. Journal of Analytical Toxicology, 26, 201–204.PubMedPubMedCentralGoogle Scholar
  20. Deiteren, A., De Man, J. G., Pelckmans, P. A., & De Winter, B. Y. (2015). Histamine H4 receptors in the gastrointestinal tract. British Journal of Pharmacology, 172, 1165–1178.PubMedPubMedCentralGoogle Scholar
  21. DiBattista, A., McIntosh, N., Lamoureux, M., Al-Dirbashi, O. Y., Chakraborty, P., & Britz-McKibbin, P. (2017a). Temporal signal pattern recognition in mass spectrometry: A method for rapid identification and accurate quantification of biomarkers for inborn errors of metabolism with quality assurance. Analytical Chemistry, 89, 8112–8121.PubMedPubMedCentralGoogle Scholar
  22. DiBattista, A., McIntosh, N., Lamoureux, M., Al-Dirbashi, O. Y., Chakraborty, P., & Britz-McKibbin, P. (2019). Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification. Jorunal of Proteome Research, 18, 841–854.Google Scholar
  23. DiBattista, A., Rampersaud, D., Lee, H., Kim, M., & Britz-McKibbin, P. (2017b). High throughput screening method for systematic surveillance of drugs of abuse by multisegment injection–capillary electrophoresis–mass spectrometry. Analytical Chemistry, 89, 11853–11861.PubMedPubMedCentralGoogle Scholar
  24. Diederen, K., Hoekman, D. R., Hummel, T. Z., Meij, T. G., Koot, B. G. P., Tabbers, M. M., et al. (2016). The prevalence of irritable bowel syndrome-type symptoms in paediatric inflammatory bowel disease, and the relationship with biochemical markers of disease activity. Alimentary Pharmacology & Therapeutics, 44, 181–188.Google Scholar
  25. Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis—mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14, 69.Google Scholar
  26. Drossman, D. A. (2016). Functional gastrointestinal disorders: History, pathophysiology, clinical features, and Rome IV. Gastroenterology, 150, 1262–1279.Google Scholar
  27. Dumas, M.-E., Barton, R. H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National academy of Sciences of the United States of America, 103, 12511–12516.PubMedPubMedCentralGoogle Scholar
  28. Edamatsu, T., Fujieda, A., & Itoh, Y. (2018). Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS ONE, 13, e0193342.PubMedPubMedCentralGoogle Scholar
  29. Eisenstein, M. (2016). Microbiome: Bacterial broadband. Nature, 533, S104–S106.PubMedPubMedCentralGoogle Scholar
  30. Enck, P., Aziz, Q., Barbara, G., Farmer, A. D., Fukudo, S., Mayer, E. A., et al. (2016). Irritable bowel syndrome. Nature Reviews Disease Primers, 2, 16014.PubMedPubMedCentralGoogle Scholar
  31. Forough, F., Brock, E., & Jan, I. E. (2006). Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: Prevalence and impact on health. Inflammatory Bowel Diseases, 12, 38–46.Google Scholar
  32. Fowler, D. I., Norton, P. M., Cheung, M. W., & Pratt, E. L. (1957). Observations on the urinary amino acid excretion in man: the influence of age and diet. Archives of Biochemistry and Biophysics, 68, 452–466.PubMedGoogle Scholar
  33. Friesen, R. W., Novak, E. M., Hasman, D., & Innis, S. M. (2007). Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. The Journal of Nutrition, 137, 2641–2646.PubMedGoogle Scholar
  34. García Rodríguez, L. A., Ruigómez, A., Wallander, M. A., Johansson, S., & Olbe, L. (2000). Detection of colorectal tumor and inflammatory bowel disease during follow-up of patients with initial diagnosis of irritable bowel syndrome. Scandinavian Journal of Gastroenterology, 35, 306–311.PubMedPubMedCentralGoogle Scholar
  35. Geremia, A., Biancheri, P., Allan, P., Corazza, G. R., & Di Sabatino, A. (2014). Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews, 13, 3–10.PubMedGoogle Scholar
  36. Goo, Y. A., Cain, K., Jarrett, M., Smith, L., Voss, J., Tolentino, E., et al. (2012). Urinary proteome analysis of irritable bowel syndrome (IBS) symptom subgroups. Journal of Proteome Research, 11, 5650–5662.PubMedPubMedCentralGoogle Scholar
  37. Graber, C. D., Goust, J. M., Glassman, A. D., Kendall, R., & Loadholt, C. B. (1981). Immunomodulating properties of dimethylglycine in humans. The Journal of Infectious Diseases, 143, 101–105.PubMedGoogle Scholar
  38. Gwee, K.-A., Collins, S. M., Read, N. W., Rajnakova, A., Deng, Y., Graham, J. C., et al. (2003). Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut, 52, 523–526.PubMedPubMedCentralGoogle Scholar
  39. Halmos, E. P., Power, V. A., Shepherd, S. J., Gibson, P. R., & Muir, J. G. (2014). A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology, 146, 67–75.PubMedGoogle Scholar
  40. Hamming, O. J., Kang, L., Svensson, A., Karlsen, J. L., Rahbek-Nielsen, H., Paludan, S. R., et al. (2012). Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. Journal of Biological Chemistry, 287, 9454–9460.PubMedGoogle Scholar
  41. Hayes, P. A., Fraher, M. H., & Quigley, E. M. M. (2014). Irritable bowel syndrome: The role of food in pathogenesis and management. Gastroenterology & Hepatology, 10, 164–174.Google Scholar
  42. Hilska, M., Collan, Y., Peltonen, J., Gullichsen, R., Paajanen, H., & Laato, M. (1998). The distribution of collagen types I, III, and IV in normal and malignant colorectal mucosa. European Journal of Surgery, 164, 457–464.PubMedPubMedCentralGoogle Scholar
  43. Hofmann, A. F., & Hagey, L. R. (2008). Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cellular and Molecular Life Sciences, 65, 2461–2483.PubMedPubMedCentralGoogle Scholar
  44. Ihara, Y., Inai, Y., Ikezaki, M., Matsui, I.-S. L., Manabe, S., & Ito, Y. (2015). C-Mannosylation: Modification on tryptophan in cellular proteins. In N. Taniguchi, T. Endo, W. G. Hart, H. P. Seeberger, & C.-H. Wong (Eds.), Glycoscience: Biology and medicine (pp. 1091–1099). Tokyo: Springer Japan.Google Scholar
  45. Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Review Molecular Cell Biology, 17, 451–459.Google Scholar
  46. Kendig, D. M., & Grider, J. R. (2015). Serotonin and colonic motility. Neurogastroenterology and Motility, 27, 899–905.PubMedPubMedCentralGoogle Scholar
  47. Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2014). Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World Journal of Gastroenterology, 20, 14105–14125.PubMedPubMedCentralGoogle Scholar
  48. Keszthelyi, D., Troost, F. J., Jonkers, D. M., Kruimel, J. W., Leue, C., & Masclee, A. A. M. (2013). Decreased levels of kynurenic acid in the intestinal mucosa of IBS patients: Relation to serotonin and psychological state. Journal of Psychosomatic Research, 74, 501–504.PubMedGoogle Scholar
  49. Koh, A., Molinaro, A., Stahlman, M., Khan, M. T., Schmidt, C., Manneras-Holm, L., et al. (2018). Microbially produced imidazole propionate impairs insulin signalling through mTORC1. Cell, 175, 947–961.PubMedGoogle Scholar
  50. Krane, S. M., Kantrowitz, F. G., Byrne, M., Pinnell, S. R., & Singer, F. R. (1977). Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. Journal of Clinical Investigation, 59, 819–827.PubMedPubMedCentralGoogle Scholar
  51. Kuehnbaum, N. L., Gillen, J. B., Kormendi, A., Lam, K. P., DiBattista, A., Gibala, M. J., et al. (2015). Multiplexed separations for biomarker discovery in metabolomics: Elucidating adaptive responses to exercise training. Electrophoresis, 36, 2226–2236.PubMedPubMedCentralGoogle Scholar
  52. Kuehnbaum, N. L., Kormendi, A., & Britz-McKibbin, P. (2013). Multisegment injection-capillary electrophoresis-mass spectrometry: A high throughput platform for metabolomics with high data fidelity. Analytical Chemistry, 85, 10664–10669.PubMedPubMedCentralGoogle Scholar
  53. Lacy, B. E. (2016). Perspective: An easier diagnosis. Nature, 533, S107–S107.PubMedPubMedCentralGoogle Scholar
  54. Lacy, B. E., Mearin, F., Chang, L., Chey, W. D., Lembo, A. J., Simren, M., et al. (2016). Bowel disorders. Gastroenterology, 150, 1393–1407.Google Scholar
  55. Mahieu, N. G., & Patti, G. J. (2017). Systems-level annotation of a metabolomics data set reduces 25,000 features to fewer than 1000 unique metabolites. Analytical Chemistry, 89, 10397–10406.PubMedPubMedCentralGoogle Scholar
  56. Mailloux, R. J., Young, A., Chalker, J., Gardiner, D., O’Brien, M., Slade, L., et al. (2016). Choline and dimethylglycine produce superoxide/hydrogen peroxide from the electron transport chain in liver mitochondria. FEBS Letters, 590, 4318–4328.PubMedPubMedCentralGoogle Scholar
  57. Marshall, J. K., Thabane, M., Borgaonkar, M. R., & James, C. (2007). Postinfectious irritable bowel syndrome after a food-borne outbreak of acute gastroenteritis attributed to a viral pathogen. Clinical Gastroenterology and Hepatology, 5, 457–460.PubMedPubMedCentralGoogle Scholar
  58. Massadeh, A. M., Gharaibeh, A. A., & Omari, K. W. (2009). A single-step extraction method for the determination of nicotine and cotinine in Jordanian smokers’ blood and urine samples by RP-HPLC and GC-MS. Journal of Chromatographic Science, 47, 170–177.PubMedPubMedCentralGoogle Scholar
  59. McIntosh, K., Reed, D. E., Schneider, T., Dang, F., Keshteli, A. H., De Palma, G., et al. (2017). FODMAPs alter symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut, 66, 1241–1251.PubMedPubMedCentralGoogle Scholar
  60. Meleine, M., & Matricon, J. (2014). Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones. World Journal of Gastroenterology, 20, 6725–6743.PubMedPubMedCentralGoogle Scholar
  61. Monsbakken, K. W., Vandvik, P. O., & Farup, P. G. (2005). Perceived food intolerance in subjects with irritable bowel syndrome—Etiology, prevalence and consequences. European Journal of Clinical Nutrition, 60, 667–672.Google Scholar
  62. Mortensen, J. H., Manon-Jensen, T., Jensen, M. D., Hagglund, P., Klinge, L. G., Kjeldsen, J., et al. (2017). Ulcreative colitis, Crohn’s disease and irratble bowel syndome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS ONE, 12, e0185855.PubMedPubMedCentralGoogle Scholar
  63. Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1, 153.PubMedPubMedCentralGoogle Scholar
  64. Niddam, D. M., Tsai, S.-Y., Lu, C.-L., Ko, C.-W., & Hsieh, J.-C. (2011). Reduced hippocampal glutamate– glutamine levels in irritable bowel syndrome: Preliminary findings using magnetic resonance spectroscopy. American Journal of Gastroenterology, 106, 1503–1511.PubMedPubMedCentralGoogle Scholar
  65. Nimni, M. E. (1983). Collagen: structure, function, and metabolism in normal and fibrotic tissues. Seminars in Arthritis Rheumatism, 13, 1–86.PubMedPubMedCentralGoogle Scholar
  66. Nori de Macedo, A., Mathiaparanam, S., Brick, L., Keenan, K., Gonska, T., Pedder, L., et al. (2017). The sweat metabolome of screen-positive cystic fibrosis infants: Revealing mechanisms beyond impaired chloride transport. ACS Central Science, 3, 904–913.Google Scholar
  67. Obrenovich, M. E., Tima, M. A., Polinkovsky, A., Zhang, R., Emancipator, S. N., & Donskey, C. J. (2017). A targeted metabolomics analysis identifies intestinal microbiota-derived urinary biomarkers of colonization resistance in antibiotic-treated mice. Antimicrobial Agents and Chemotherapy, 61, e00477–e00517.PubMedPubMedCentralGoogle Scholar
  68. Peironcely, J. E., Reijmers, T., Coulier, L., Bender, A., & Hankemeier, T. (2011). Understanding and classifying metabolite space and metabolite-likeness. PLoS ONE, 6, e28966.PubMedPubMedCentralGoogle Scholar
  69. Pero, R. W., Lund, H., & Leanderson, T. (2009). Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytotherapy Research, 23, 335–346.PubMedPubMedCentralGoogle Scholar
  70. Playdon, M. C., Sampson, J. N., Cross, A. J., Sinha, R., Guertin, K. A., Moy, K. A., et al. (2016). Comparing metabolite profiles of habitual diet in serum and urine. The American Journal of Clinical Nutrition, 104, 776–789.PubMedPubMedCentralGoogle Scholar
  71. Qin, X. (2017). Damage of the mucus layer: The possible shared critical common cause for both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Inflammatory Bowel Diseases, 23, E11–E12.PubMedPubMedCentralGoogle Scholar
  72. Quigley, E. M. M. (2016). Editorial: serotonin and irritable bowel syndrome—Reconciling pharmacological effects with basic biology. Alimentary Pharmacology & Therapeutics, 43, 644–646.Google Scholar
  73. Rattray, N. J. W., Deziel, N. C., Wallach, J. D., Khan, S. A., Vasiliou, V., Ioannidis, J. P. A., et al. (2018). Beyond genomics: Understanding exposotypes through metabolomics. Human Genomics, 12, 4.PubMedPubMedCentralGoogle Scholar
  74. Reap, E. A., & Lawson, J. W. (1990). Stimulation of the immune response by dimethylglycine, a nontoxic metabolite. The Journal of Laboratory and Clinical Medicine, 115, 481–486.PubMedPubMedCentralGoogle Scholar
  75. Rodríguez, L. A. G., & Ruigómez, A. (1999). Increased risk of irritable bowel syndrome after bacterial gastroenteritis: cohort study. British Medical Journal, 318, 565.PubMedPubMedCentralGoogle Scholar
  76. Rothwell, J. A., Fillâtre, Y., Martin, J.-F., Lyan, B., Pujos-Guillot, E., Fezeu, L., et al. (2014). New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PLoS ONE, 9, e93474.PubMedPubMedCentralGoogle Scholar
  77. Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 8, 3.PubMedPubMedCentralGoogle Scholar
  78. Savolainen, E. R., Miettinen, T. A., Pikkarainen, P., Salaspuro, M. P., & Kivirikko, K. I. (1983). Enzymes of collagen synthesis and type III procollagen aminopropeptide in the evaluation of D-penicillamine and medroxyprogesterone treatments of primary biliary cirrhosis. Gut, 24, 136–142.PubMedPubMedCentralGoogle Scholar
  79. Simrén, M., Barbara, G., Flint, H. J., Spiegel, B. M. R., Spiller, R. C., Vanner, S., et al. (2013). Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 62, 159–176.PubMedPubMedCentralGoogle Scholar
  80. Simren, M., Mansson, A., Langkilde, A. M., Svedlund, J., Abrahamsson, H., Bengtsson, U., et al. (2001). Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion, 63, 108–115.PubMedPubMedCentralGoogle Scholar
  81. Sinagra, E., Pompei, G., Tomasello, G., Cappello, F., Moreale, G. C., Amvrosiadis, G., et al. (2017). Inflammation in irriatbale bowel syndrome: Myth or new treatment strategy? World Journal of Gastroenterology, 22, 2242–2255.Google Scholar
  82. Slattery, S. A., Niaz, O., Aziz, Q., Ford, A. C., & Farmer, A. D. (2015). Systematic review with meta-analysis: The prevalence of bile acid malabsorption in the irritable bowel syndrome with diarrhoea. Alimentary Pharmacology & Therapeutics, 42, 3–11.Google Scholar
  83. Snaith, R. P. (2003). The hospital anxiety and depression scale. Health Quality Life Outcomes, 1, 29.Google Scholar
  84. Spiller, R. C., Jenkins, D., Thornley, J. P., Hebden, J. M., Wright, T., Skinner, M., et al. (2000). Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut, 47, 804–811.PubMedPubMedCentralGoogle Scholar
  85. Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics, 31, 2013–2035.Google Scholar
  86. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.PubMedPubMedCentralGoogle Scholar
  87. Thijssen, A. Y., Mujagic, Z., Jonkers, D. M. A. E., Ludidi, S., Keszthelyi, D., Hesselink, M. A., et al. (2016). Alterations in serotonin metabolism in the irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 43, 272–282.Google Scholar
  88. Törnblom, H., Lindberg, G., Nyberg, B., & Veress, B. (2002). Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology, 123, 1972–1979.PubMedPubMedCentralGoogle Scholar
  89. Viant, M. R., Kurland, I. J., Jones, M. R., & Dunn, W. B. (2017). How close are we to complete annotation of metabolomes? Current Opinion in Chemical Biology, 36, 64–69.PubMedPubMedCentralGoogle Scholar
  90. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84, 531–539.PubMedPubMedCentralGoogle Scholar
  91. Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-M. Nature Protocols, 5, 1005–1018.PubMedPubMedCentralGoogle Scholar
  92. Wess, L., Eastwood, M. A., Wess, T. J., Busuttil, A., & Miller, A. (1995). Cross linking of collagen is increased in colonic diverticulosis. Gut, 37, 91–94.PubMedPubMedCentralGoogle Scholar
  93. William, T. B. (1978). Structure and biosynthesis of connective tissue proteoglycans. In H. Martin (Ed.), The Glycoconjugates. New York: Academic Press Inc.Google Scholar
  94. Yamamoto, H., & Sasaki, K. (2017). Metabolomics-based approach for ranking the candidate structures of unidentified peaks in capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis, 38, 1053–1059.PubMedPubMedCentralGoogle Scholar
  95. Yamamoto, M., Ly, R., Gill, B., Zhu, Y., Moran-Mirabal, J., & Britz-McKibbin, P. (2016). Robust and high-throughput method for anionic metabolite profiling: Preventing polyimide aminolysis and capillary breakages under alkaline conditions in capillary electrophoresis-mass spectrometry. Analytical Chemistry, 88, 10710–10719.PubMedPubMedCentralGoogle Scholar
  96. Yamanuchi, M., & Sricholpech, M. (2012). Lysine in post-translational modification of collagen. Essays Biochemistry, 52, 113–133.Google Scholar
  97. Yano, Jessica M., Yu, K., Donaldson, Gregory P., Shastri, Gauri G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161, 264–276.PubMedPubMedCentralGoogle Scholar
  98. Zheng, Y.-F., Yang, J., Zhao, X.-J., Feng, B., Kong, H.-W., Chen, Y.-J., et al. (2005). Urinary nucleosides as biological markers for patients with colorectal cancer. World Journal of Gastroenterology, 11, 3871–3876.PubMedPubMedCentralGoogle Scholar
  99. Zhou, Q., Souba, W. W., Croce, C. M., & Verne, G. N. (2010). MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut, 59, 775–784.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  2. 2.Farncombe Family Digestive Health InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations