Advertisement

Metabolomics

, 15:79 | Cite as

Volatile apocarotenoid discovery and quantification in Arabidopsis thaliana: optimized sensitive analysis via HS-SPME-GC/MS

  • John Y. Rivers
  • Thy T. Truong
  • Barry J. Pogson
  • Ryan P. McQuinnEmail author
Original Article
Part of the following topical collections:
  1. Plant metabolomics and lipidomics

Abstract

Introduction

In the field of carotenoid metabolism researchers’ focus has been directed recently toward the discovery and quantification of carotenoid cleavage products (i.e. apocarotenoids, excluding the well-studied carotenoid-derived hormones abscisic acid and strigolactones), due to their emerging roles as putative signaling molecules. Gas chromatography mass spectrometry (GC/MS) and sample preparation via headspace solid phase micro-extraction (HS-SPME) are widely used analytical techniques for broad untargeted metabolomics studies and until now, no optimized quantitative targeted HS-SPME-GC/MS method has been developed specifically for volatile apocarotenoids (VAs) in planta.

Objectives

Optimization and subsequent validation of the HS-SPME technique for extracting and quantifying volatile apocarotenoids in planta.

Methods

Factors considered during method optimization were HS-SPME parameters; vial storage conditions; different adsorbent SPME fibre coating chemistries; plant tissue matrix effects; and fresh tissues to be analyzed.

Results

Mean linear regression in planta calibration correlation coefficients (R2) for VAs was 0.974. The resultant method mean limits of detection (LOD) and lower limits of quantification (LLOQ) for VAs using in planta standard additions were 0.384 ± 0.139 and 0.640 ± 0.231 µg/L, respectively. VAs remained stable at elevated SPME incubation temperatures, with no observable effects of thermal and photo-stereoisomerisation and oxidation. The bipolar 50/30 µm divinylbenzene/carboxen on polydimethylsiloxane (PDMS/DVB/CAR) was identified as the optimal fibre for broad molecular weight range VA analysis.

Conclusions

An optimized HS-SPME-GC/MS method for VA detection and quantification was validated in vitro and in planta: based on biological replicates and stringent QA/QC approaches, thereby providing robust detection and quantification of VAs across a broad range of Arabidopsis tissues, fifteen of which were identified for the first time in Arabidopsis.

Keywords

Arabidopsis thaliana Apocarotenoid SPME Volatiles GC/MS 

Notes

Acknowledgements

John Y. Rivers acknowledges the support of the Grains Research and Development Corporation (GRDC) Grains Industry Research Scholarship (GRS10687) and the Australian Government Research Training Program. John Y. Rivers, Ryan P. McQuinn and Barry J. Pogson acknowledge the support of the Australian Research Council Centre of Excellence in Plant Energy Biology (CE140100008).

Supplementary material

11306_2019_1529_MOESM1_ESM.xlsx (121 kb)
Electronic supplementary material 1 (XLSX 121 kb)
11306_2019_1529_MOESM2_ESM.ai (1.2 mb)
Electronic supplementary material 2 (AI 1221 kb)

References

  1. Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., et al. (2012). The path from β-Carotene to carlactone, a strigolactone-like plant hormone. Science, 335, 1348–1351.CrossRefGoogle Scholar
  2. Avendaño-Vázquez, A.-O., Cordoba, E., Llamas, E., San Román, C., Nisar, N., De la Torre, S., et al. (2014). An uncharacterized apocarotenoid-derived signal generated in ζ-Carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. The Plant Cell, 26, 2524–2537.CrossRefGoogle Scholar
  3. Besada, C., Salvador, A., Sdiri, S., Gil, R., & Granell, A. (2013). A combination of physiological and chemometrics analyses reveals the main associations between quality and ripening traits and volatiles in two loquat cultivars. Metabolomics, 9, 324–336.CrossRefGoogle Scholar
  4. Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., & Leyser, O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 14, 1232–1238.CrossRefGoogle Scholar
  5. Bouvier, F., Isner, J.-C., Dogbo, O., & Camara, B. (2005). Oxidative tailoring of carotenoids: A prospect towards novel functions in plants. Trends in Plant Science, 10, 187–194.CrossRefGoogle Scholar
  6. Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., et al. (2001). Growth stage–based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. The Plant Cell, 13, 1499–1510.CrossRefGoogle Scholar
  7. Bruno, M., Koschmieder, J., Wuest, F., Schaub, P., Fehling-Kaschek, M., Timmer, J., et al. (2016). Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites. Journal of Experimental Botany, 67, 5993–6005.CrossRefGoogle Scholar
  8. Buttery, R. G., Seifert, R. M., Guadagni, D. G., & Ling, L. C. (1971). Characterization of additional volatile components of tomato. Journal of Agricultural and Food Chemistry, 19(3), 524–529.CrossRefGoogle Scholar
  9. Chan, K. X., Phua, S. Y., Crisp, P., McQuinn, R., & Pogson, B. J. (2016). Learning the languages of the chloroplast: Retrograde signaling and beyond. Annual Review of Plant Biology.  https://doi.org/10.1146/annurev-arplant-043015-111854.CrossRefPubMedGoogle Scholar
  10. de Pinho, P. G., Valentão, P., Gonçalves, R. F., Sousa, C., & Andrade, P. B. (2009). Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 23(15), 2292–2300.CrossRefGoogle Scholar
  11. Dobson, H. E. M., Bergstrom, J., Bergstrom, G., & Groth, I. (1987). Pollen and flower volatiles in two Rosa species. Phytochemistry, 26(12), 3171–3173.CrossRefGoogle Scholar
  12. Donaldson, J. M. I., McGovern, T. P., & Ladd, T. L. (1990). Floral attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 83, 1298–1305.CrossRefGoogle Scholar
  13. Duncan, M. W. (2012). Good mass spectrometry and its place in good science. Journal of Mass Spectrometry, 47, 795–809.CrossRefGoogle Scholar
  14. Farmer, E., Mousavi, S., & Lenglet, A. (2013). Leaf numbering for experiments on long distance signalling in Arabidopsis. Protocol Exchange., 25, 236.  https://doi.org/10.1038/protex.2013.071.CrossRefGoogle Scholar
  15. Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43, 228–265.CrossRefGoogle Scholar
  16. Hammack, L. (2001). Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles. Journal of Chemical Ecology, 27, 1373–1390.CrossRefGoogle Scholar
  17. Havaux, M. (2013). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79, 597–606.CrossRefGoogle Scholar
  18. Hou, X., Rivers, J., León, P., McQuinn, R. P., & Pogson, B. J. (2016). Synthesis and function of apocarotenoid signals in plants. Trends in Plant Science, 21(9), 792–803.CrossRefGoogle Scholar
  19. Huang, F.-C., Molnár, P., & Schwab, W. (2009). Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60, 3011–3022.CrossRefGoogle Scholar
  20. Ilg, A., Beyer, P., & Al-Babili, S. (2009). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276, 736–747.CrossRefGoogle Scholar
  21. Ilg, A., Bruno, M., Beyer, P., & Al-Babili, S. (2014). Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio, 4, 584–593.CrossRefGoogle Scholar
  22. Kachanovsky, D. E., Filler, S., Isaacson, T., & Hirschberg, J. (2012). Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proceedings of the National Academy of Sciences, 109, 19021–19026.CrossRefGoogle Scholar
  23. Kanasawud, P., & Crouzet, J. C. (1990). Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 2. Lycopene degradation. Journal of Agricultural and Food Chemistry, 38(5), 1238–1242.CrossRefGoogle Scholar
  24. Kheder, F. B. H., Mahjoub, M. A., Zaghrouni, F., Kwaja, S., Helal, A. N., & Mighri, Z. (2014). Chemical composition antioxidant and antimicrobial activities of the essential oils of Matricaria aurea Loefl. growing in Tunisia. Journal of Essential Oil Bearing Plants, 17(3), 493–505.CrossRefGoogle Scholar
  25. Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.CrossRefGoogle Scholar
  26. Kusano, M., Iizuka, Y., Kobayashi, M., Fukushima, A., & Saito, K. (2013). Development of a direct headspace collection method from Arabidopsis seedlings using HS-SPME-GC-TOF-MS Analysis. Metabolites, 3(2), 223–242.CrossRefGoogle Scholar
  27. Lashbrooke, J. G., Young, P. R., Dockrall, S. J., Vasanth, K., & Vivier, M. A. (2013). Functional characterization of three members of Vitis vinifera L. carotenoid cleavage dioxygenase family. BMC Plant Biology, 13, 156–173.CrossRefGoogle Scholar
  28. McQuinn, R. P., Giovannoni, J. J., & Pogson, B. J. (2015). More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling. Current Opinion in Plant Biology, 27, 172–179.CrossRefGoogle Scholar
  29. Melendez-Martinez, A. J., Stinco, C. M., Liu, C., & Wang, X.-D. (2013). A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chemistry, 138, 1341–1350.CrossRefGoogle Scholar
  30. Morteza-Semnani, K., Seedi, M., & Akbarzadeh, M. (2014). Chemical composition of the essential oil of Salvia limbata C. A. Mey. Journal of Essential Oil Bearing Plants, 17(4), 623–628.CrossRefGoogle Scholar
  31. NIST. (2014). NIST/EPA/NIH Mass Spectral Library. In NIST Standard Reference Database 1A.Google Scholar
  32. Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylidès, C., & Havaux, M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences, 109, 5535–5540.CrossRefGoogle Scholar
  33. Rios, J. J., Fernandez-Garcia, E., Mingues-Mosquera, I., & Perez-Galvez, A. (2008). Description of volatile compounds generated by degradation of carotenoids in paprika, tomato, and marigold oleoresins. Food Chemistry, 106, 1145–1153.CrossRefGoogle Scholar
  34. Risticevic, S., Lord, H., Gorecki, T., Arthur, C. L., & Pawliszyn, J. (2010). Protocol for solid-phase microextraction method development. Nature Protocols, 5, 122–139.CrossRefGoogle Scholar
  35. Rodov, V., Ben-Yehoshua, S., Fang, D. Q., Kim, J. J., & Ashkenazi, R. (1995). Preformed antifungal compounds of lemon fruit: Citral and its relation to disease resistance. Journal of Agricultural and Food Chemistry, 43, 1057–1061.CrossRefGoogle Scholar
  36. Rohloff, J., & Bones, A. M. (2005). Volatile profiling of Arabidopsis thaliana—Putative olfactory compounds in plant communication. Phytochemistry, 66, 1941–1955.CrossRefGoogle Scholar
  37. Rubio, A., Rambla, J. L., Santaella, M., Gomez, M. D., Orzaez, D., Granell, A., et al. (2008). Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone release. The Journal of Biological Chemistry, 283, 24816–24825.CrossRefGoogle Scholar
  38. Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., et al. (2003). Volatile ester formation in roses. Identification of an acetyl coenzyme A. geraniol/citrenellol aceyltransferase in developing rose petals. Plant Physiology, 131, 1868–1876.CrossRefGoogle Scholar
  39. Shirey, R. (2007). Selecting the appropriate SPME fiber coating—Effect of analyte molecular weight and polarity. The Reporter: SUPELCO Analytical, 28, 13–15.Google Scholar
  40. Shumbe, L., Bott, R., & Havaux, M. (2014). Dihydroactinidiolide, a high light-induced β-Carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Molecular Plant, 7, 1248–1251.CrossRefGoogle Scholar
  41. Supelco. (2016). Selection Guide for Supelco SPME Fibers: Sigma-Aldrich.Google Scholar
  42. Tieman, D., Bliss, P., McIntyre, Lauren M., Blandon-Ubeda, A., Bies, D., et al. (2012). The chemical interactions underlying tomato flavor preferences. Current Biology, 22, 1035–1039.CrossRefGoogle Scholar
  43. Van Norman, J. M., Zhang, J., Cazzonelli, C. I., Pogson, B. J., Harrison, P. J., Bugg, T. D. H., et al. (2014). Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative. Proceedings of the National Academy of Sciences, 11(13), E1300–E1309.CrossRefGoogle Scholar
  44. Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90, 2233–2240.CrossRefGoogle Scholar
  45. Wang, L-m, Li, M-t, Jin, W-w, Li, S., Zhang, S-q, & Yu, L-j. (2009). Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chemistry, 114, 233–236.CrossRefGoogle Scholar
  46. Wei, S., Hannoufa, A., Soroka, J., Xu, N., Li, X., Zebarjadi, A., et al. (2011). Enhanced β-ionone emission in arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environmental Entomology, 40, 1622–1630.CrossRefGoogle Scholar
  47. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis New York. New York: Springer-Verlag.CrossRefGoogle Scholar
  48. Williams, R. N., Fickle, D. S., McGovern, T. P., & Klein, M. G. (2000). Development of an attractant for the scarab pest Macrodactylus subspinosus (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 93, 1480–1481.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraAustralia
  2. 2.Joint Mass Spectrometry Facility, Research School of ChemistryThe Australian National UniversityCanberraAustralia

Personalised recommendations