Advertisement

Metabolomics

, 15:44 | Cite as

The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science

  • Henrik Max Jensen
  • Hanne Christine BertramEmail author
Review Article
Part of the following topical collections:
  1. Feeding a healthier world: metabolomics for food and nutrition

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy has been used in food science and nutritional studies for decades and is one of the major analytical platforms in metabolomics. Many foods are solid or at least semi-solid, which denotes that the molecular motions are restricted as opposed to in pure liquids. While the majority of NMR spectroscopy is performed on liquid samples and a solid material gives rise to constraints in terms of many chemical analyses, the magic angle thrillingly enables the application of NMR spectroscopy also on semi-solid and solid materials. This paper attempts to review how magic-angle spinning (MAS) NMR is used from ‘farm-to-fork’ in food science.

Graphical abstract

Keywords

Semi-solid food characterization Food composition Foodomics Food metabolites Meat Dairy Plant-based food Taste compounds Cheese Food authenticity Intact tissue Food structure Fruit ripening Grain filling, vegetables, plant biochemistry 

Abbreviations and definitions

2D

Two-dimensional. Term used for techniques, which give data plotted in a space defined by two frequency axes rather than one and with the intensities constituting a third dimension

CMP

Comprehensive multiphase NMR combining both 1H HR-MAS, diffusion restriction and 13C CP MAS type of experiments in one probe

CP

Cross polarization. CP is technique employed in solid-state NMR to transfer magnetization from one type of spin to another type of spin through space. This is achieved by applying a pulse simultaneously on the two different spins

CPMG

Carr–Purcell–Meiboom–Gill. CPMG is a pulse sequence that utilizes a T2 relaxation filter to remove or attenuate broad resonances from of molecules with a short T2 relaxation. This enables broadening of macromolecules beyond detection, allowing improved detection of small molecules

DANTE

Delays alternating with nutations for tailored excitation (Morris and Freeman 1978).

DNP

Dynamic nuclear polarisation. Highly sensitive NMR technique where spectra are recorded under hyperpolarisation of the sample

DSC

Differential scanning calorimetry

FTIR

Fourier transform InfraRed spectroscopy

GABA

γ-Aminobutyric acid

GC

Gas chromatography

HCA

Hierarchical cluster analysis. HCA is method that is used to classify and cluster samples or variables based on their similarities and dissimilarities

HR

High resolution

HR-MAS

High resolution MAS. A term defined by the vendor for NMR probe heads optimized for 1H NMRof gel-state samples (not crystalline, but soft solids, swollen materials or gels), where standard liquid pulse sequences (1D and 2D, HSQC, TOCSY) can be applied under magic angle spinning conditions

HPLC

High pressure liquid chromatography

HSQC

Heteronuclear single quantum correlation. HSQC is a 2D experiment used in NMR spectroscopy. In a 1H-13C HSQC experiment, information about the correlation between the aliphatic carbon and its attached protons are obtained, which can facilitate in spectral assignment

iMQC

Hadamard encoded intermolecular multiple-quantum coherence

MAS

Magic angle spinning. MAS is a technique used in solid-state NMR spectroscopy and consists of spinning the sample at the magic angle θm (54.74°) with respect to the direction of the magnetic field to enhance the spectral resolution

MVDA

Multivariate data analysis. MVDA is typically used to explore variations and trends in data across a high number of variables. As NMR spectral data consist of a high number of variables, MVDA is a useful tool to explore NMR spectral data

NOESY

Nuclear Overhauser enhancement spectroscopy. An NMR experiment that takes advantage of the Nuclear Overhauser effect, consisting of dipole–dipole interactions through space

O-PLS

Orthogonal partial least squares. O-PLS is an adaption of PLS that separates the systematic variation in X into variation that is related or unrelated to Y

PASS

Phase-altered spinning sideband. Scheme for two-dimensional sideband separation in MAS NMR. The scheme can produce spinning sideband-free solid-state NMR spectra (Antzutkin et al. 1995)

PCA

Principal component analysis

PHORMAT

Phase-corrected magic angle turning. Scheme for two-dimensional sideband separation in MAS NMR. The scheme can produce spinning sideband-free solid-state NMR spectra (Hu et al. 1995)

PLS

Partial least squares projections to latent structures is the supervised extension of PCA where the data matrix, X, is related to Y by regression

PLS-DA

Partial least squares discriminant analysis. PLS-DA is a supervised method that uses a categorical response variable

PMMA

Poly(methyl methacrylate). Polymer material used for MAS rotors

POM

Polyoxymethylene. Polymer material used for MAS rotors

PRISE

Proton relaxation induced spectral-editing. A 13C cross-polarization experiment that takes advantage of differences in the 1H relaxation to obtain information on molecular dynamics. If multiple components are present in the proton relaxation processes, proton magnetisation can be prepared in such a way that the magnetisation of protons having different relaxation times is separated (Tang et al. 2000)

qNMR

Quantitative NMR. qNMR refers to the use of NMR to determine the exact concentration of one or more chemical species

RINEPT

: Refocused-insensitive nuclei enhanced by polarization transfer. RINEPT is technique employed in solution NMR to elucidates scalar (or J-) couplings between 1H and 13C nuclei. The technique has occasionally been adopted to solid-state NMR to transfer magnetization from one type of spin to another type of spin through bonds (Arnold et al. 2015)

Shimming

The procedure for optimizing the magnetic field homogeneity prior to acquisition of a spectrum

SP

Single pulse. The most basic NMR experiment is called a single pulse experiment. The experiment begins with the system at equilibrium and thus magnetization is oriented along the z axis. The first step is a 90° x pulse, which means that an excitation field is applied along the x axis by one of the radio frequency coils

SWET

Secure water suppression enhanced through T1 effects. Modified version of the WET pulse sequence where each selective pulse is broken up in the DANTE fashion, inserting bipolar pulsed-field gradients in the delays (Wu and Otting 2005)

TOCSY

Total correlation spectroscopy. TOCSY is a 2D experiment that enables the detection of cross peaks of coupled protons. Cross peaks are observed both for nuclei which are directly coupled and also between nuclei which are connected by a chain of couplings. This makes it useful for identifying the larger interconnected networks of spin couplings.

WATERGATE

Water suppression by gradient-tailored excitation. In WATERGATE the gradient echo sequence combines a selective 180-degrees radiofrequency pulse and two field gradient pulses to achieve a highly selective and effective water suppression (Piotto et al. 1992).

WET

Water suppression enhanced through T1 effects. This pulse sequence uses shaped, selective pulses and pulsed magnetic field gradients to suppress one or more solvent signals. The WET scheme is based on a series of water-selective excitation pulses followed by pulsed field gradients to defocus the transverse water magnetization (Smallcombe et al. 1995).

WISE

Wide line separation NMR. WISE is an NMR experiment based on the use of cross-polarization to characterize molecular dynamics (Schmidt-Rohr et al. 1992).

XRD

X-ray diffraction

Notes

Author contributions

HMJ contributed with literature search and drafted approx. 65% of the text. HCB contributed with literature search and drafted approx. 35% of the text. Both authors revised and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors Henrik Max Jensen and Hanne Christine Bertram declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2019_1504_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1130 KB)

References

  1. Aguilar, J. A., Nilsson, M., Bodenhausen, G., & Morris, G. A. (2012). Spin echo NMR spectra without J modulation. Chemical Communications, 48, 811–813.PubMedCrossRefGoogle Scholar
  2. Andre, M., Dumez, J.-N., Rezig, L., Shintu, L., Piotto, M., & Caldarelli, S. (2014). Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Analytical Chemistry, 86, 10749–10754.PubMedCrossRefGoogle Scholar
  3. Andreas, L. B., Barnes, A. B., Corzilius, B., Chou, J. J., Miller, E. A., Caporini, M., Rosay, M., & Griffin, R. G. (2013). Dynamic nuclear polarization study of inhibitor binding to M218–60 proton transporter from influenza A. Biochemistry, 52, 2774–2782.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrew, E. R., Bradbury, A., & Eades, R. G. (1958). Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature, 182, 1659.CrossRefGoogle Scholar
  5. Antzutkin, O. N., Shekar, S. C., & Levitt, M. H. (1995). Two-dimensional sideband separation in magic-angle spinning NMR. Journal of Magnetic Resonance, Series A, 115, 7–19.CrossRefGoogle Scholar
  6. Ardenkjaer-Larsen, J.-H., Boebinger, G. S., Comment, A., Duckett, S., Edison, A. S., Engelke, F., Griesinger, C., Griffin, R. G., Hilty, C., Maeda, H., Parigi, G., Prisner, T., Ravera, E., Bentum, J. v., Vega, S., Webb, A., Luchinat, C., Schwalbe, H., & Frydman, L. (2015). Facing and overcoming challenges in bio-molecular NMR spectroscopy. Angewandte Chemie International Edition, 54, 2–26.CrossRefGoogle Scholar
  7. Arnold, A. A., Genard, B., Zito, F., Tremblay, R., Warschawski, D. E., & Marcotte, I. (2015). Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochimica et Biophysica Acta, 1848, 369–377.PubMedCrossRefGoogle Scholar
  8. Aursand, M., Gribbestad, I. S., & Martinez, I. (2008). Omega-3 fatty acids content of intact muscle of farmed Atlantic salmon (Salmo solar) examined by 1H MAS NMR spectroscopy. In G. A. Webb (Ed.), Modern magnetic resonance: Part 1: Applications in chemistry, biological and marine sciences (1st edn., pp. 941–945). Dordrecht: Springer.Google Scholar
  9. Bankefors, J., Kaszowska, M., Schlectriem, C., Pickova, J., Brännas, E., Edebo, L., Kiessling, A., & Sandström, C. (2011). A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic salmon (Salmo solar L.)—Application to a short feeding study. Food Chemistry, 129, 1397–1405.CrossRefGoogle Scholar
  10. Bardet, M., Foray, M. F., & Guillermo, A. (2006). High-resolution solid-state NMR spectroscopy as an analytical tool to study plant seeds. In G. A. Webb (Ed.), Modern magnetic resonance, Part 3: Applications in materials science and food sciences (pp. 1777–1781). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Beckonert, O., Coen, M., Keun, H. C., Wang, Y., Ebbels, Y. M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5, 1019–1032.PubMedCrossRefGoogle Scholar
  12. Bertram, H. C., Duarte, I. F., Gil, A. M., Knudsen, K. E. B., & Laerke, H. N. (2007). Metabolic profiling of liver from hypercholesterolemic pigs fed rye or wheat fiber and from normal pigs. High-resolution magic angle spinning H-1 NMR spectroscopic study. Analytical Chemistry, 79, 168–175.PubMedCrossRefGoogle Scholar
  13. Bertram, H. C., Hu, J. Z., Rommerein, D. N., Wind, R. A., & Andersen, H. J. (2004d). Dynamic high-resolution 1H and 31P NMR spectroscopy and 1H T2 measurements in postmortem rabbit muscles using slow magic angle spinning. Journal of Agricultural and Food Chemistry, 52, 2681–2688.PubMedCrossRefGoogle Scholar
  14. Bertram, H. C., Jakobsen, H. J., & Andersen, H. J. (2004b). Combined high-field 13C CP MAS NMR and low-field NMR relaxation measurements on post mortem porcine muscles. Journal of Agricultural and Food Chemistry, 52, 3159–3164.PubMedCrossRefGoogle Scholar
  15. Bertram, H. C., Jakobsen, H. J., Andersen, H. J., Karlsson, A. H., & Engelsen, S. B. (2003). Post mortem changes in the porcine M. Longissimus studied using solid-state 13C CP MAS NMR spectroscopy. Journal of Agricultural and Food Chemistry, 51, 2064–2069.PubMedCrossRefGoogle Scholar
  16. Bertram, H. C., Schäfer, A., Rosenvold, K., & Andersen, H. J. (2004c). Physical changes of significance for early post mortem water distribution in porcine M. longissimus. Meat Science, 66, 915–924.PubMedCrossRefGoogle Scholar
  17. Bertram, H. C., Whittaker, A. K., Andersen, H. J., & Karlsson, A. H. (2004a). The use of simultaneous 1H & 31P magic angle spinning nuclear magnetic resonance measurements to characterize energy metabolism during the conversion of muscle to meat. International Journal of Food Science and Technology, 39, 661–670.CrossRefGoogle Scholar
  18. Brennan, L. (2014). NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 83, 42–49.PubMedCrossRefGoogle Scholar
  19. Brescia, M. A., Jambrenghi, A. C., Di Martino, V., Sacco, D., Giannico, F., Vonghia, G., & Sacco, A. (2002). High resolution nuclear magnetic resonance spectroscopy (NMR) studies on meat components: Potentialities and prospects. Italian Journal of Animal Science, 1, 151–158.CrossRefGoogle Scholar
  20. Brescia, M. A., & Sacco, A. (2006). Magic angle spinning NMR of flours and doughs. In G. A. Webb (Ed.), Modern magnetic resonance, Part 3: Applications in materials science and food sciences (pp. 1735–1741). Dordrecht: Springer.Google Scholar
  21. Cai, H., Chen, Y., Cui, X., Cai, S., & Chen, Z. (2014a). High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence. Plos ONE, 9, e86422.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cai, J., Cai, C., Man, J., Zhou, W., & Wei, C. (2014b). Structural and functional properties of C-type starches. Carbohydrate Polymers, 101, 289–300.PubMedCrossRefGoogle Scholar
  23. Calucci, L., & Geppi., M. (2006). High-resolution solid-state of gluten and dough. In G. A. Webb (Ed.), Modern magnetic resonance, Part 3: Applications in materials science and food sciences (pp. 1747–1754). Dordrecht: Springer.Google Scholar
  24. Capozzi, F., & Bordini, A. (2013). Foodomics: A new comprehensive approach to food and nutrition. Genes & Nutrition, 8, 1–4.CrossRefGoogle Scholar
  25. Carr, H. Y., & Purcell, E. M. (1954). Effects of diffusion on free procession in nuclear magnetic resonance experiments. Physical Review, 94, 630–638.CrossRefGoogle Scholar
  26. Castejon, D., Villa, P., Calvo, M. M., Santa-Maria, G., Herraiz, M., & Herrera, A. (2010). 1H-HRMAS NMR study of smoked Atlantic salmon (Salmo salar). Magnetic Resonance in Chemistry, 48, 693–703.PubMedCrossRefGoogle Scholar
  27. Chatterjee, S., Matas, A., Isaacson, T., Kehlet, C., Rose, J., & Stark, R. (2016). Solid-state 13C NMR delineates the architectural design of biopolymers in native and engineered tomato fruit cuticles. Biomolecules, 17, 215–224.Google Scholar
  28. Choze, R., Alcantara, G. B., Alves Filho, G., de Silva, E., e, L. M. A., Faria, J. C., & Lião, L. M. (2013). Distinction between a transgenic and a conventional common genotype by 1H HR MAS NMR. Food Chemistry, 141, 2841–2847.PubMedCrossRefGoogle Scholar
  29. Ciampa, a, Renzi, G., Taglienti, a, Sequi, P., & Valentini, M. (2010). Studies on coffee roasting process by means of nuclear magnetic resonance spectroscopy. Journal of Food Quality, 33, 199–211.CrossRefGoogle Scholar
  30. Conte, P., Spaccini, R., & Piccolo, A. (2004). State of the art of CPMAS C-13-NMR spectroscopy applied to natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 215–223.CrossRefGoogle Scholar
  31. Corsaro, C., Mallamace, D., Vasi, S., Ferrantelli, V., Dugo, G., & Cicero, N.(2015). 1H HR-MAS NMR spectroscopy and the metabolite determination of typical foods in Mediterranean diet. Journal of Analytical Methods in Chemistry.  https://doi.org/10.1155/2015/175696.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Delgado-Goñi, T., et al. (2013). Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue. Planta, 238, 397–413.PubMedCrossRefGoogle Scholar
  33. Deshmukh, A. P., Simpson, A. J., & Hatcher, P. G. (2003). Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry, 64, 1163–1170.PubMedCrossRefGoogle Scholar
  34. Foster, T. J., McCann, M. C., & Gidley, M. J. (1996). Mobility-resolved 13C-NMR spectroscopy of primary plant cell walls. Biopolymers, 39, 51–66.CrossRefGoogle Scholar
  35. Friebolin, H. (1998). Basic one- and two-dimensional NMR spectroscopy (3rd ed.). Chichester: Wiley-VCH. ISBN 3-527-29513-5.Google Scholar
  36. Gaëlle, S., Kervarec, N., & Cérantola, S., & Connan, D. B. (2015). HR MAS NMR analysis and identification of molecules of interest via conventional 1D and 2D NMR: sample preparation and optimization of experimental conditions. In S. Stengel (Ed.), Chapter 12 in ‘Methods in molecular biology’ (Vol. 1308, pp. 191–205). Dordrecht: Springer.Google Scholar
  37. Garcia-Garcia, A. B., Lamichhane, S., Castejon, D., Cambero, M. I., & Bertram, H. C. (2018).). 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food Chemistry, 240, 514–523.PubMedCrossRefGoogle Scholar
  38. Gidley, M. J. (1989). Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules, 22, 351–358.CrossRefGoogle Scholar
  39. Gidley, M. J., & Bociek, S. M. (1985). Molecular organization in starches: A 13C CP/MAS NMR study. Journal of the American Chemical Society, 107, 7040–7044.CrossRefGoogle Scholar
  40. Gil, M., Duarte, I. F., Delgadillo, I., Colquhoun, I. J., Casuscelli, F., Humpfer, E., & Spraul, M. (2000). Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy. Journal of Agricultural and Food Chemistry, 48, 1524–1536.PubMedCrossRefGoogle Scholar
  41. Gobet, M., Rondeau-Mouro, C., Buchin, S., Qu´er´, L., Guichard, J.-L., Foucat, E., L., & Moreau, C. (2010). Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy. Magnetic Resonance in Chemistry, 48, 297–303.PubMedCrossRefGoogle Scholar
  42. Gogiashvili, M., Nowacki, J., Hergenröder, R., Hengstler, J. G., Lambert, J., & Edlund, K. (2019). HR-MAS NMR based quantitative metabolomics in breast cancer. Metabolites, 9, 19.  https://doi.org/10.3390/metabo9020019.CrossRefGoogle Scholar
  43. Haque, E., Bhandari, B. R., Gidley, M. J., Deeth, H. C., & Whittaker, A. K. (2015). Change in molecular structure and dynamics of protein in milk protein concentrate powder upon ageing by solid-state carbon NMR. Food Hydrocolloids, 44, 66–70.CrossRefGoogle Scholar
  44. Heath, P., & Claus, S. P. (2011). Assessing hepatic metabolic changes during progressive colonization of germ-free mouse by 1H NMR spectroscopy. Journal of Visualized Experiments, 58, e3642.  https://doi.org/10.3791/3642.CrossRefGoogle Scholar
  45. Heinze, T., & Koschella, A. (2005). Carboxymethyl ethers of cellulose and starch—A review. Macromolecular Symposia, 223, 13–39.CrossRefGoogle Scholar
  46. Hennebelle, M., Roy, M., St-Pierre, V., Courchesne-Loyer, A., Fortier, M., Bouzier-Sore, A.-K., Gallis, J.-L., Beauvieux, M.-C., & Cunnane, S. C. (2015). Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on Western-style diet. Nutrition, 31, 523–530.PubMedCrossRefGoogle Scholar
  47. Heude, C., Lemasson, E., Elbayed, K., & Piotto, M. (2015). Rapid assessment of fish freshness and quality by 1H HR-MAS NMR spectroscopy. Food Analytical Methods, 8, 907–915.CrossRefGoogle Scholar
  48. Holse, M., Larsen, F. H., Hansen, Å, & Engelsen, S. B. (2011). Characterization of marama bean (Tylosema esculentum) by comparative spectroscopy: NMR, FT-Raman, FT-IR and NIR. Food Research Inernational, 44, 373–384.CrossRefGoogle Scholar
  49. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–444.CrossRefGoogle Scholar
  50. Hoult, D. I. (1976). Solvent peak saturation with single-phase and quadrature Fourier transformation. Journal of Magnetic Resonance, 21, 337–347.Google Scholar
  51. Hu, J. Z., Rommereim, D. N., & Wind, R. A. (2002). High-resolution H-1 NMR spectroscopy in rat liver using magic angle turning at a 1 Hz spinning rate. Magnetic Resonance in Medicine, 47, 829–836.PubMedCrossRefGoogle Scholar
  52. Kromhaut, D., & de Goede, J. (2014). Update on cardiometabolic health effects of omega-3-fatty acids. Current Opinion in Lipidology, 25, 85–90.CrossRefGoogle Scholar
  53. Lamanna, R., Piscioneri, I., Romanelli, V., & Sharma, N. (2008). A preliminary study of soft cheese degradation in different packaging conditions by 1H-NMR. Magnetic Resonance in Chemistry, 46, 828–831.PubMedCrossRefGoogle Scholar
  54. Lamichhane, S., Yde, C. C., Mielby, L. H., Kidmose, U., Møller, J. R., Hammershoej, M., & Bertram, H. C. (2015). High-resolution magic-angle spinning studies of semi-hard Danbo (30+) cheese-impact of processing conditions and relation to sensory perception. In: F. Capozzi, L. Laghi, & P. S. Belton (Eds.), Magnetic resonance in food science: Defining food by magnetic resonance (pp. 171–180). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Larsen, F. H., Byg, I., Damager, I., Diaz, J., Engelsen, S. B., & Ulvskov, P. (2011). Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy. Biomacromolecules, 12, 1844–1850.PubMedCrossRefGoogle Scholar
  56. Larsen, F. H., Kasprzak, M. M., Lærke, H. N., Knudsen, K. E. B., Pedersen, S., Jørgensen, A. S., & Blennow, A. (2013). Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR. Carbohydrate Polymers, 97, 502–511.PubMedCrossRefGoogle Scholar
  57. Larsson, P. T., Hult, E. L., Wickholm, K., Pettersson, E., & Iversen, T. (1999). CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nuclear Magnetic Resonance, 15, 31–40.PubMedCrossRefGoogle Scholar
  58. Le Guennec, A., Tayyari, F., & Edison, A. S. (2017). Alternatives to nuclear overhauser enhancement spectroscopy Presat and Carr–Purcell–Meiboom–Gill Presat for NMR-based metabolomics. Analytical Chemistry, 89, 8582–8588.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Longobardi, F., Sacco, D., Casiello, G., Ventrella, A., Contessa, A., & Sacco, A. (2012). Garganica kid goat meat: Physico-chemical characterization and nutritional impacts. Journal of Food Composition and Analysis, 28, 107–113.CrossRefGoogle Scholar
  60. Lopes-da-Silva, J. A., Santos, D. M., Freitas, A., Brites, C., & Gil, A. M. (2007). Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs. Journal of Agriculture and Food Chemistry, 55, 5636–5644.CrossRefGoogle Scholar
  61. Manach, C., Hubert, J., Llorach, R., & Scalbert, A. (2009). The complex links between dietary phytochemicals and human health deciphered by metabolomics. Molecular Nutrition & Food Research, 53, 1303–1315.CrossRefGoogle Scholar
  62. Marino, M., da Silva, L. L., Duran, N., & Tasic, L. (2015). Enhanced materials from nature: Nanocellulose from citrus waste. Molecules, 20, 5908–5923.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Martins, J. G. (2009). EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. Journal of the American College of Nutrition, 28(5), 525–542.PubMedCrossRefGoogle Scholar
  64. Mazzei, P., & Piccolo, A. (2012). 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chemistry, 132, 1620–1627.PubMedCrossRefGoogle Scholar
  65. Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Review of Scientific Instruments, 29, 688–691.CrossRefGoogle Scholar
  66. Mihhalevski, A., Heinmaa, I., Traksmaa, R., Pehk, T., & Paalme, T. (2012). Structural changes of starch during baking and staling of rye bread. Journal of Agriculture and Food Chemistry, 60, 8492–8500.CrossRefGoogle Scholar
  67. Mobarhan, Y. L., Fortier-McGill, B., Soong, R., Maas, W. E., Fey, M., Monette, M., Stronks, H. J., Schmidt, S., Heumann, H., Norwood, & Simpson, W., A. J (2016). Comprehensive multiphase NMR applied to a living organism. Chemical Science, 2016, 7, 4856.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Morgan, K. R., Furneaux, R. H., & Larsen, N. G. (1995). Solid-state NMR studies on the structure of starch granules. Carbohydrate Research, 276, 387–399.CrossRefGoogle Scholar
  69. Morris, G. A., & Freeman, R. (1978). Selective excitation in fourier transform nuclear magnetic resonance. Journal of Magnetic Resonance, 29, 433–462.Google Scholar
  70. Mucci, A., Parenti, F., Righi, V., & Schenetti, L. (2013). Citron and lemon under the lens of HR-MAS NMR spectroscopy. Food Chemistry, 141, 3167–3176.PubMedCrossRefGoogle Scholar
  71. Mutungi, C., Passauer, L., Onyango, C., Jaros, D., & Rohm, H. (2012). Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydrate Polymers, 87, 598–606.CrossRefGoogle Scholar
  72. Nestor, G., Bankefors, J., Schlectriem, C., Brännas, E., Pickova, J., & Sandström, C. (2010). High-resolution 1H magic angle spinning NMR spectroscopy of intact arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA. Journal of Agricultural and Food Chemistry, 58, 10799–10803.PubMedCrossRefGoogle Scholar
  73. Ni, Q. W., & Eads, T. M. (1993a). Liquid-phase composition of intact fruit tissue measured by high-resolution proton NMR. Journal of Agricultural and Food Chemistry, 41, 1026–1034.CrossRefGoogle Scholar
  74. Ni, Q. W., & Eads, T. M. (1993b). Liquid-phase composition of intact fruit tissue measured by high-resolution proton NMR. Journal of Agricultural and Food Chemistry, 41, 1035–1040.CrossRefGoogle Scholar
  75. Nogueira, R. F., Boffo, E. F., Tavares, M. I. B., Moreira, L. A., Tavares, L. A., & Ferreira, A. G. (2011). The use of solid state NMR to evaluate the carbohydrates in commercial coffee granules. Food and Nutrition Sciences, 2, 350–355.CrossRefGoogle Scholar
  76. Otero, L., & Prestamo, G. (2009). Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innovative Food Science & Emerging Technologies, 10, 434–440.CrossRefGoogle Scholar
  77. Paris, M., Bizot, H., Emery, J., Buzaré, J. Y., & Buléon, A. (1999). Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy 1: Spectral decomposition. Carbohydrate Polymers, 39, 327–339.CrossRefGoogle Scholar
  78. Paris, M., Bizot, H., Emery, J., Buzaré, J. Y., & Buléon, A. (2001a). NMR local range investigations in amorphous starchy substrates: I—Structural heterogeneity probed by 13 C CP-MAS NMR. International Journal of Biological Macromolecules, 29, 127–136.PubMedCrossRefGoogle Scholar
  79. Paris, M., Bizot, H., Emery, J., Buzaré, J. Y., & Buléon, A. (2001b). NMR local range investigations in amorphous starchy substrates: II—Dynamical heterogeneity probed by 1H/13C magnetization transfer and 2D WISE solid state NMR. International Journal of Biological Macromolecules, 29, 137–143.PubMedCrossRefGoogle Scholar
  80. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: Measurement techniques and their impact in interpreting cellulase performance. Biotechnology for Biofuels, 3, 10.  https://doi.org/10.1186/1754-6834-3-10.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559–572.Google Scholar
  82. Pecher, O., Halat, D. M., Lee, J., Liu, Z. G., Griffith, K. J., Braun, M., & Grey, C. P. (2017). Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot. Journal of Magnetic Resonance, 275, 127–136.PubMedCrossRefGoogle Scholar
  83. Pérez, E. M. S., Iglesias, M. J., Ortiz, F. L., Pérez, I. S., & Galera, M. M. (2010). Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening. Food Chemistry, 122, 877–887.CrossRefGoogle Scholar
  84. Pérez, E. M. S., López, J. G., Iglesias, M. J., Ortiz, F. L., Toresano, F., & Camacho, F. (2011). HRMAS-nuclear magnetic resonance spectroscopy characterization of tomato “flavor varieties” from Almeria (Spain). Food Research International, 44, 3212–3221.CrossRefGoogle Scholar
  85. Piotto, M., Saudek, V., & Sklenar, V. (1992). Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. Journal of Biomolecular NMR, 2, 661–665.PubMedCrossRefGoogle Scholar
  86. Piterina, A. V., Barlett, J., & Pembroke, J. T. (2009). 13C-NMR assessment of the pattern of organic matter transformation during domestic wastewater treatment by autothermal aerobic digestion (ATAD). International Journal of Environmental Research and Public Health, 6, 2288–2306.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Quistorff, B., Frye, J. S., & Bock, K. (1993). Methods for liquid- and solid-state CP-MAS NMR spectroscopy of untreated tissue biopsies. Analytical Biochemistry, 213, 68–74.PubMedCrossRefGoogle Scholar
  88. Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tiskan, G. A., & Wyman, C. E. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344,  https://doi.org/10.1126/science.1246843.
  89. Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., & Wishart, D. S. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE.  https://doi.org/10.1371/journal.pone.0124219.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Riediger, N. D., Othman, R. A., Suth, M., & Moghadasian, M. H. (2009). A systematic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109, 668–679.PubMedCrossRefGoogle Scholar
  91. Ritota, M., Casciani, L., Failla, S., & Valentini, M. (2012). HRMAS-NMR spectroscopy and multivariate analysis meat characterization. Meat Science, 92, 754–761.PubMedCrossRefGoogle Scholar
  92. Ritota, M., Casciani, L., Han, B. Z., Cozzolino, S., Leita, L., Sequi, P., & Valentini, M. (2012). Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chemistry, 135, 684–693.PubMedCrossRefGoogle Scholar
  93. Ritota, M., Marini, F., Sequi, P., & Valentini, M. (2010). Metabolomic characterization of Italian sweet pepper (Capsicum annum L.) by means of HRMAS-NMR spectroscopy and multivariate analysis. Journal of Agricultural and Food Chemistry, 58, 9675–9968.PubMedCrossRefGoogle Scholar
  94. Röhnisch, H., Eriksson, J., Müllner, E., Agback, P., Sandström, C., & Moazzami, A. A. (2018). AquA: An automated quantification algorithm for high-throughput NMR-based metabolomics and its applications in human plasma. Analytical Chemistry, 90, 2095–2101.PubMedCrossRefGoogle Scholar
  95. Sacco, D., Bolsi, I. N., Massini, R., Spraul, M., Humpfer, E., & Stefano Ghelli, S. (1998). Preliminary investigation on the characterization of Durum wheat flours coming from some areas of south italy by means of 1H high-resolution magic angle spinning nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 46, 4242–4249.CrossRefGoogle Scholar
  96. Sacco, D., Brescia, M. A., Buccolieri, A., & Caputi Jambrenghi, A. (2005). Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations. Meat Science, 71, 542–548.PubMedCrossRefGoogle Scholar
  97. Salomonsen, T., Jensen, H. M., Larsen, F. H., Steuernagel, S., & Engelsen, S. B. (2009). Direct quantification of M/G ratio from 13C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohydrate Research, 344, 2014–2022.PubMedCrossRefGoogle Scholar
  98. Schmidt-Rohr, K., Clauss, J., & Spiess, H. W. (1992). Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules, 25(12), 3273–3277.CrossRefGoogle Scholar
  99. Seefeldt, H. F., Larsen, F. H., Viereck, N., Wollenweber, B., & Engelsen, S. B. (2008). Bulk carbohydrate grain filling of barley β-glucan mutants studied by 1H HR MAS NMR. Cereal Chemistry, 85, 571–577.CrossRefGoogle Scholar
  100. Serra, O., Chatterjee, S., Huang, W., & Stark, R. E. (2012). Review: What nuclear magnetic resonance can tell us about protective tissues. Plant Science, 195, 120–124.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shintu, L., & Caldarelli, S. (2005). High-resolution MAS NMR and chemometrics: characterization of the ripening of Parmigiano Reggiano cheese. Journal of Agricultural and Food Chemistry, 53, 4026–4031.PubMedCrossRefGoogle Scholar
  102. Shintu, L., & Caldarelli, S. (2006). Toward the determination of the geographical origin of Emmental(er) cheese via high resolution MAS NMR: A preliminary investigation. Journal of Agricultural and Food Chemistry, 54, 4148–4154.PubMedCrossRefGoogle Scholar
  103. Shintu, L., Caldarelli, S., & Franke, B. M. (2007). Pre-selection of potential molecular markers for the geographic origin of dried beef by HR-MAS NMR spectroscopy. Meat Science, 76, 700–707.PubMedCrossRefGoogle Scholar
  104. Shintu, L., Ziarelli, F., & Caldarelli, S. (2004). Is high-resolution magic angle spinning NMR a practical speciation tool for cheese samples? Parmigiano Reggiano as a case study. Magnetic Resonance in Chemistry, 42, 396–401.PubMedCrossRefGoogle Scholar
  105. Smallcombe, S. H., Patt, S. L., & Keifer, P. A. (1995). WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. Journal of Magnetic Resonance Series A, 117, 295–303.CrossRefGoogle Scholar
  106. Song, C., & Zhao, S. (2007). “Omega-3 fatty acid eicosapentaenoic acid. A new treatment for psychiatric and neurodegenerative diseases: A review of clinical investigations”. Expert Opinion on Investigational Drugs, 16, 1627–1638.  https://doi.org/10.1517/13543784.16.10.1627.CrossRefPubMedGoogle Scholar
  107. Song, E.-H., Kim, H.-J., Jeong, J., Chung, H.-J., Kim, H.-Y., Bang, E., & Hong, Y-S. (2016). A 1H HR-MAS NMR-based metabolomic study for metabolic characterization of rice grain from various Oryza sativa L. cultivars. Journal of Agricultural and Food Chemistry, 64, 3009–3016.PubMedCrossRefGoogle Scholar
  108. Soong, J. L., Reuss, D., Pinney, C., Boyack, T., Haddix, M.L., Stewart, C.E., & Cotrufo, M. F. (2014). Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling. Journal of Visualized Experiments, 83, e51117.  https://doi.org/10.3791/51117 CrossRefGoogle Scholar
  109. Stark, R. E., Yan, B., Ray, A. K., Chen Z., Fang, X., & Garbow, J. R. (2000). NMR studies of structure and dynamics in fruit cuticle polyesters. Solid State Nuclear Magnetic Resonance, 16, 37–45.PubMedCrossRefGoogle Scholar
  110. Synytsya, A., Copikova, J., & Brus, J. (2003). 13C CP/MAS NMR spectra of pectins: A peak-fitting analysis in the C-6 region. Czech Journal of Food Sciences, 21, 1–12.CrossRefGoogle Scholar
  111. Tan, I., Flanagan, B. M., Halley, P. J., Whittaker, A. K., & Gidley, M. J. (2007). A method for estimating the nature and relative proportions of amorphous, single, and doubled-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules, 8, 885–891.PubMedCrossRefGoogle Scholar
  112. Tang, H., & Hills, B. P. (2003). Use of MAS NMR to study domain structure and dynamics of polysaccharides in the native starch granules 13C. Biomacromolecules, 4, 1269–1276.PubMedCrossRefGoogle Scholar
  113. Tang, H., & Wang, Y. (2006). ‘High-resolution solid-state NMR spectroscopy of starch polysaccharides’. In G. A. Webb (Ed.), Modern magnetic resonance, Part 3: Applications in materials science and food sciences (pp. 1761–1769). New York: Springer.Google Scholar
  114. Tang, H. R., Wang, Y. L., & Belton, P. S. (2000). 13C CPMAS studies of plant cell wall materials and model systems using proton relaxation-induced spectral editing techniques. Solid State Nuclear Magnetic Resonance, 15, 239–248.PubMedCrossRefGoogle Scholar
  115. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.CrossRefGoogle Scholar
  116. Vermathen, M., Marzorati, M., Baumgartner, D., Good, C., & Vermathen, P. (2011). Investigation of different apple cultivars by high resolution magic angle spinning NMR. A feasibility study. Journal of Agricultural and Food Chemistry, 59, 12784–12793.PubMedCrossRefGoogle Scholar
  117. Vermathen, M., Marzorati, M., Diserens, G., Baumgartner, D., Good, C., Gasser, F., & Vermathen, P. (2017). Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by H-1 high resolution-magic angle spinning (HR-MAS) NMR. Food Chemistry, 233, 391–400.PubMedCrossRefGoogle Scholar
  118. Villa, P., Castejon, D., Herraiz, M., & Herrera, A. (2013). 1H-HRMAS NMR study of cold smoked Atlantic salmon (Salmo salar) treated with E-beam. Magnetic Resonance in Chemistry, 51, 350–357.PubMedCrossRefGoogle Scholar
  119. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRefGoogle Scholar
  120. Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2010). Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA. Metabolomics, 6, 119–128.PubMedCrossRefGoogle Scholar
  121. Wind, R. A., Hu, J. Z., & Rommereim, D. N. (2001). High-resolution 1H NMR spectroscopy in organs and tissues using slow magic angle spinning. Magnetic Resonance in Medicine, 46, 213–218.PubMedCrossRefGoogle Scholar
  122. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.CrossRefGoogle Scholar
  123. Wu, P. S. C., & Otting, G. (2005). SWET for secure water suppression on probes with high quality factor. Journal of Biomolecular NMR, 32, 243–250.PubMedCrossRefGoogle Scholar
  124. Yu, B., Vengadesan, G., Wang, H., Jashi, L., Yefremov, T., Gaba, V., Shomer, I., & Stark, R. E. (2006). Magic-angle spinning NMR studies of cell wall bound aromatic-aaliphatic biopolyesters associated with strengthening of intercellular adhesion in potato (Solanum tuberosum) tuber paranchyma. Biomacromolecules, 7, 937–944.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.DuPont Nutrition Biosciences ApSBrabrandDenmark
  2. 2.Department of Food ScienceAarhus UniversityAarslevDenmark

Personalised recommendations