Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics
Abstract
Objective
To identify new biomarkers of bronchopulmonary dysplasia (BPD) in preterm neonates.
Study design
Metabolomic study of prospectively collected tracheal aspirate (TA) samples from preterm neonates admitted in 2 neonatal intensive care units measured by a mass spectroscopy-based assay and analysed using partial least squares-discriminant analysis.
Results
We evaluated 160 TA samples from 68 neonates, 44 with BPD and 24 without BPD in the first week of life. A cluster of 53 metabolites was identified as characteristic of BPD, with 18 select metabolites being highly significant in the separation of BPD versus No BPD. To control for the gestational age (GA) differences, we did a sub-group analyses, and noted that the amino acids histidine, glutamic acid, citrulline, glycine and isoleucine levels were higher in neonates with BPD. In addition, acylcarnitines C16-OH and C18:1-OH were also higher in neonates who developed BPD, but especially in the most preterm infants (neonates with GA < 27 weeks).
Conclusion
Metabolomics is a promising approach to identify novel specific biomarkers for BPD.
Keywords
Chronic lung disease Preterm newborn Prematurity Metabolomics Mass spectrometry.Abbreviations
- AUROC
Area under the receiver operating characteristic curve
- BALF
Bronchoalveolar lavage fluid
- BPD
Bronchopulmonary dysplasia
- GA
Gestational age
- LC
Liquid chromatography
- LV
Latent variables
- MS
Mass spectrometer
- NICU
Neonatal intensive care unit
- NMC
Number of misclassifications
- PH
Pulmonary hypertension
- PLS-DA
Partial least squares-discriminant analysis
- TA
Tracheal aspirate
- VIP
Variables importance for prediction
Notes
Acknowledgements
We thank Edward Z. Voss for assistance with mass spectrometry sample preparation and data collection. The 4000 QTRAP mass spectrometer purchased through NIH CTSA Grant, UL1 RR024139.
Author Contributions
Conceived and designed the experiments—FP, VB; collected data and performed experiments—FP, TL, ZA, PV, AQ, VB; analyzed the data—FP, PV, AQ, LP, ZA, VB; drafted and edited the manuscript—FP, TL, PV, AQ, LP, ZA, VB; supervised the entire project—VB. All authors have read and approved the final version of the manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- Aghai, Z. H., Camacho, J., Saslow, J. G., Mody, K., Eydelman, R., Bhat, V., et al. (2012). Impact of histological chorioamnionitis on tracheal aspirate cytokines in premature infants. American Journal of Perinatology, 29, 567–572.PubMedGoogle Scholar
- Aghai, Z. H., Mody, S. J., Eydelman, K., Bhat, R., Stahl, V., Pyon, G., et al. (2013). IFN-γ and IP-10 in tracheal aspirates from premature infants: Relationship with bronchopulmonary dysplasia. Pediatric Pulmonology, 48, 8–13.CrossRefGoogle Scholar
- Baraldi, E., Giordano, G., Stocchero, M., Moschino, L., Zaramella, P., Tran, M. R., Carraro, S., Romero, R., & Gervasi, M. T. (2016). Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS ONE, 11, e0164211.CrossRefGoogle Scholar
- Barker, M., & Rayens, M. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.CrossRefGoogle Scholar
- Bhandari, A., & Bhandari, V. (2013). Biomarkers in bronchopulmonary dysplasia. Paediatric Respiratory Reviews, 14, 173–179.CrossRefGoogle Scholar
- Bhandari, V., Bizzarro, M. J., Shetty, A., Zhong, X., Page, G. P., Zhang, H., et al. (2006). Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics, 117, 1901–1906.CrossRefGoogle Scholar
- Bhargava, M., Becker, T. L., Viken, K. J., Jagtap, P. D., Dey, S., Steinbach, M. S., et al. (2014). Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors. PLoS ONE, 9, e109713.CrossRefGoogle Scholar
- Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112.CrossRefGoogle Scholar
- Csardi, G., & Nepusz, T. (2006) The igraph software package for complex network research. InterJournal, Complex Systems 1695.Google Scholar
- de Blic, J., Midulla, F., Barbato, A., Clement, A., Dab, I., Eber, E., et al. (2000). Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. European Respiratory Journal, 15, 217–231.CrossRefGoogle Scholar
- de Boo, H. A., & Harding, J. E. (2007) Taurine as a marker for foetal wellbeing? Neonatology, 91, 145–154.CrossRefGoogle Scholar
- Fabiano, A., Gazzolo, D., Zimmermann, L. J., Gavilanes, A. W., Paolillo, P., Fanos, V., et al. (2011). Metabolomic analysis of bronchoalveolar lavage fluid in preterm infants complicated by respiratory distress syndrome: Preliminary results. The Journal of Maternal-Fetal & Neonatal Medicine, 24(Suppl 2), 55–58.CrossRefGoogle Scholar
- Fanos, V., Pintus, M. C., Lussu, M., Atzori, L., Noto, A., Stronati, M., et al. (2014). Urinary metabolomics of bronchopulmonary dysplasia (BPD): Preliminary data at birth suggest it is a congenital disease. The Journal of Maternal-Fetal & Neonatal Medicine, 27(Suppl 2), 39–45.CrossRefGoogle Scholar
- Fike, C. D., Dikalova, A., Kaplowitz, M. R., Cunningham, G., Summar, M., & Aschner, J. L. (2015). Rescue treatment with L-citrulline inhibits hypoxia-induced pulmonary hypertension in newborn pigs. American Journal of Respiratory Cell and Molecular Biology, 53, 255–264.CrossRefGoogle Scholar
- Fike, C. D., Summar, M., & Aschner, J. L. (2014). L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants. Acta Paediatrica, 103, 1019–1026.CrossRefGoogle Scholar
- Goffredo, M., Santoro, N., Trico, D., Giannini, C., D’Adamo, E., Zhao, H., et al. (2017) A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients. https://doi.org/10.3390/nu9070642 CrossRefPubMedPubMedCentralGoogle Scholar
- Griffiths, W. J., Koal, T., Wang, Y., Kohl, M., Enot, D. P., & Deigner, H. P. (2010). Targeted metabolomics for biomarker discovery. Angewandte Chemie International Edition, 49, 5426–5445.CrossRefGoogle Scholar
- Hsia, C. C., Hyde, D. M., & Weibel, E. R. (2016). Lung structure and the intrinsic challenges of gas exchange. Comprehensive Physiology, 6, 827–895.CrossRefGoogle Scholar
- Illsinger, S., Janzen, N., Sander, S., Schmidt, K. H., Bednarczyk, J., Mallunat, L., et al. (2010). Preeclampsia and HELLP syndrome: Impaired mitochondrial function in umbilical endothelial cells. Reproductive Sciences, 17, 219–226.CrossRefGoogle Scholar
- La Frano, M., Fahrmann, J., Grapov, D., Pedersen, T., Newman, J. W., Fiehn, O., et al. (2018) Umbilical cord blood metabolomics reveal distinct signatures of dyslipidemia prior to bronchopulmonary dysplasia and pulmonary hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology. https://doi.org/10.1152/ajplung.00283.2017.CrossRefPubMedGoogle Scholar
- Lal, C. V., Bhandari, V., & Ambalavanan, N. (2018a). Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Seminars in Perinatology, 42, 425–431.CrossRefGoogle Scholar
- Lal, C. V., Kandasamy, J., Dolma, K., Ramani, M., Kumar, R., Wilson, L., et al. (2018b) Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. American Journal of Physiology-Lung Cellular and Molecular Physiology. https://doi.org/10.1152/ajplung.00085.2018.CrossRefPubMedGoogle Scholar
- Lenz, A. G., Meyer, B., Costabel, U., & Maier, K. (1993). Bronchoalveolar lavage fluid proteins in human lung disease: Analysis by two-dimensional electrophoresis. Electrophoresis, 14, 242–244.CrossRefGoogle Scholar
- Marzetti, E., Landi, F., Marini, F., Cesari, M., Buford, T. W., Manini, T. M., et al. (2014). Patterns of circulating inflammatory biomarkers in older persons with varying levels of physical performance: A partial least squares-discriminant analysis approach. Frontiers in Medicine (Lausanne), 1, 27.Google Scholar
- Mody, K., Saslow, J. G., Kathiravan, S., Eydelman, R., Bhat, V., Stahl, G. E., et al. (2012). Sirtuin1 in tracheal aspirate leukocytes: Possible role in the development of bronchopulmonary dysplasia in premature infants. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 1483–1487.CrossRefGoogle Scholar
- Montgomery, A. M., Bazzy-Asaad, A., Asnes, J. D., Bizzarro, M. J., Ehrenkranz, R. A., & Weismann, C. G. (2016). Biochemical screening for pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Neonatology, 109, 190–194.CrossRefGoogle Scholar
- Pintus, M. C., Lussu, M., Dessi, A., Pintus, R., Noto, A., Masile, V., et al. (2018) Urinary (1)H-NMR metabolomics in the first week of life can anticipate BPD diagnosis. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/7620671.CrossRefPubMedPubMedCentralGoogle Scholar
- Romisch-Margl, W., Prehn, C., Bogumil, R., Rohring, C., Suhre, K., & Adamski, J. (2012). Procedure for tissue sample preparation and metaboliteextraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–142.CrossRefGoogle Scholar
- Smith, H. A., Canter, J. A., Christian, K. G., Drinkwater, D. C., Scholl, F. G., Christman, B. W., et al. (2006). Nitric oxide precursors and congenital heart surgery: A randomized controlled trial of oral citrulline. The Journal of Thoracic and Cardiovascular Surgery, 132, 58–65.CrossRefGoogle Scholar
- Szymanska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8, 3–16.CrossRefGoogle Scholar
- Team, R. C. (2017) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
- Torchin, H., Ancel, P. Y., Goffinet, F., Hascoet, J. M., Truffert, P., Tran, D., et al. (2016). Placental complications and bronchopulmonary dysplasia: EPIPAGE-2 cohort study. Pediatrics, 137, e20152163.CrossRefGoogle Scholar
- Tran, T. N., Afanador, T. L., Buydens, L. M. C., & Blancet, L. (2014). Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC). Chemometrics and Intelligent Laboratory Systems, 138, 1453–1160.CrossRefGoogle Scholar
- Trittmann, J. K., Peterson, E., Rogers, L. K., Chen, B., Backes, C. H., Klebanoff, M. A., et al. (2015). Plasma asymmetric dimethylarginine levels are increased in neonates with bronchopulmonary dysplasia-associated pulmonary hypertension. The Journal of Pediatrics, 166, 230–233.CrossRefGoogle Scholar
- von Bredow, C., Birrer, P., & Griese, M. (2001). Surfactant protein A and other bronchoalveolar lavage fluid proteins are altered in cystic fibrosis. European Respiratory Journal, 17, 716–722.CrossRefGoogle Scholar
- Walsh, M. C., Yao, Q., Gettner, P., Hale, E., Collins, M., Hensman, A., et al. (2004) Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics, 114, 1305–1311.CrossRefGoogle Scholar
- Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D., Smilde, A. K., van Velzen, E. J. J., et al. (2008). Assessment of PLS-DA cross-validation. Metabolomics, 4, 81–89.CrossRefGoogle Scholar
- Wolak, J. E., Esther, C. R. Jr., & O’Connell, T. M. (2009). Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers, 14, 55–60.CrossRefGoogle Scholar
- Wold, S., Johansson, E., & Cocchi, M. (1993). PLS: Partial least squares projections to latent structures. In H. Kubinyi (Ed.), 3D QSAR in drug design: Theory, methods, and applications (pp. 523–550). Leiden: ESCOM Science Publishers.Google Scholar
- Wold, S., Martens, H., & Wold, H. (1982). The multivariate calibration problem in chemistry solved by the PLS method. Pite Havsbad: Matrix Pencils, pp. 286–293.Google Scholar