Advertisement

Metabolomics

, 15:18 | Cite as

GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting

  • Albert Batushansky
  • Satoshi Matsuzaki
  • Maria F. Newhardt
  • Melinda S. West
  • Timothy M. Griffin
  • Kenneth M. HumphriesEmail author
Original Article

Abstract

Introduction

As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated.

Objectives

The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile.

Methods

Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography–mass spectrometry metabolic profiling and multivariate data analysis.

Results

Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17–0.15).

Conclusions

Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.

Keywords

GC–MS metabolomics Heart pathologies Cardiac metabolism Correlation network 

Notes

Author Contributions

AB, SM, MN, TG and KH conceived and designed research. AB, SM, MN, MW and KH conducted experiments. AB, SM, TG and KH analyzed data. AB, TG and KH wrote the manuscript. All authors red and approved the manuscript.

Funding

This work was supported by National Institutes of Health (NIH) grant R01HL125625, from the National Heart, Lung, and Blood Institute, with additional equipment support from the Oklahoma Center for Adult Stem Cell Research, a program of TSET.

Compliance with ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11306_2019_1478_MOESM1_ESM.pdf (54 kb)
Supplementary material 1 (PDF 54 KB)
11306_2019_1478_MOESM2_ESM.csv (17 kb)
Supplementary material 2 (CSV 16 KB)
11306_2019_1478_MOESM3_ESM.csv (1 kb)
Supplementary material 3 (CSV 1 KB)
11306_2019_1478_MOESM4_ESM.csv (2 kb)
Supplementary material 4 (CSV 1 KB)
11306_2019_1478_MOESM5_ESM.csv (3 kb)
Supplementary material 5 (CSV 3 KB)

References

  1. Angelovici, R., Batushansky, A., Deason, N., Gonzalez-Jorge, S., Gore, M. A., Fait, A., & DellaPenna, D. (2017). Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiology, 173, 872–886.CrossRefGoogle Scholar
  2. Batushansky, A., Toubiana, D., & Fait, A. (2016) Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: A case study in cancer cell metabolism. BioMed Research International, 2016, 9.CrossRefGoogle Scholar
  3. Bockus, L. B., Matsuzaki, S., Vadvalkar, S. S., Young, Z. T., Giorgione, J. R., Newhardt, M. F., Kinter, M., & Humphries, K. M. (2017) Cardiac insulin signaling regulates glycolysis through phosphofructokinase 2 content and activity. Journal of the American Heart Association 6, e007159.CrossRefGoogle Scholar
  4. Chen, Y., Zhang, R., Song, Y., He, J., Sun, J., Bai, J., An, Z., Dong, L., Zhan, Q., & Abliz, Z. (2009). RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 134, 2003–2011.CrossRefGoogle Scholar
  5. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018) MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Reserach, 46, W486–W494CrossRefGoogle Scholar
  6. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515, 431–435.CrossRefGoogle Scholar
  7. Csardi, G., & Nepusz, T. (2006) The igraph software package for complex network research. InterJournal, 1695, 1–9.Google Scholar
  8. Cummings, N. E., Williams, E. M., Kasza, I., Konon, E. N., Schaid, M. D., Schmidt, B. A., et al. (2018). Restoration of metabolic health by decreased consumption of branched-chain amino acids. The Journal of Physiology, 596, 623–645.CrossRefGoogle Scholar
  9. Depré, C., Rider, M. H., & Hue, L. (1998). Mechanisms of control of heart glycolysis. European Journal of Biochemistry, 258, 277–290.CrossRefGoogle Scholar
  10. Donovan, E.L., Lopes, E.B.P., Batushansky, A., Kinter, M. & Griffin, T.M., (2018) Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Disease Models & Mechanisms, 11, dmm034827.CrossRefGoogle Scholar
  11. Elo, L. L., Järvenpää, H., Orešič, M., Lahesmaa, R., & Aittokallio, T. (2007). Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics, 23, 2096–2103.CrossRefGoogle Scholar
  12. Feng Wang, L., Ramasamy, R., & Schaefer, S. (1999). Regulation of glycogen utilization in ischemic hearts after 24 hours of fasting. Cardiovascular Research, 42, 644–650.CrossRefGoogle Scholar
  13. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: from diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763.CrossRefGoogle Scholar
  14. Fukushima, A. (2013). DiffCorr: An R package to analyze and visualize differential correlations in biological networks. Gene, 518, 209–214.CrossRefGoogle Scholar
  15. Gibb, A. A., Epstein, P. N., Uchida, S., Zheng, Y., McNally, L. A., Obal, D., et al. (2017). Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation, 136, 2144–2157.CrossRefGoogle Scholar
  16. Goodpaster, B. H., & Sparks, L. M. (2017). Metabolic flexibility in health and disease. Cell Metabolism, 25, 1027–1036.CrossRefGoogle Scholar
  17. Griffin, T. M., Humphries, K. M., Kinter, M., Lim, H.-Y., & Szweda, L. I. (2016). Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie, 124, 74–83.CrossRefGoogle Scholar
  18. Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4, e1000117.CrossRefGoogle Scholar
  19. Huang, Y., Zhou, M., Sun, H., & Wang, Y. (2011). Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovascular Research, 90, 220–223.CrossRefGoogle Scholar
  20. Jenkins, C. M., Yang, J., Sims, H. F., & Gross, R. W. (2011). Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. Journal of Biological Chemistry, 286, 11937–11950.CrossRefGoogle Scholar
  21. Jensen, T. L., Kiersgaard, M. K., Sorensen, D. B., & Mikkelsen, L. F. (2013). Fasting of mice: A review. Laboratory Animals, 47, 225–240.CrossRefGoogle Scholar
  22. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabasi, A. L. (2000). The large-scale organization of metabolic networks. Nature, 407, 651–654.CrossRefGoogle Scholar
  23. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.CrossRefGoogle Scholar
  24. Kokubun, E., Hirabara, S. M., Fiamoncini, J., Curi, R., & Haebisch, H. (2009). Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats. Cell Biochemistry and Function, 27, 488–495.CrossRefGoogle Scholar
  25. Kolwicz, S. C., & Tian, R. (2011). Glucose metabolism and cardiac hypertrophy. Cardiovascular Research, 90, 194–201.CrossRefGoogle Scholar
  26. Kruszynska, Y. T., McCormack, J. G., & McIntyre, N. (1991). Effects of glycogen stores and non-esterified fatty acid availability on insulin-stimulated glucose metabolism and tissue pyruvate dehydrogenase activity in the rat. Diabetologia, 34, 205–211.CrossRefGoogle Scholar
  27. Li, T., Zhang, Z., Kolwicz, S. C. Jr., Abell, L., Roe, N. D., Kim, M., et al. (2017). Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metabolism, 25, 374–385.CrossRefGoogle Scholar
  28. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.CrossRefGoogle Scholar
  29. Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate–their central role in cell metabolism and function. Cell Biochemistry & Function, 21, 1–9.CrossRefGoogle Scholar
  30. Perkins, A. D., & Langston, M. A. (2009). Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinformatics, 10, S4.CrossRefGoogle Scholar
  31. Reichelt, M. E., Mellor, K. M., Curl, C. L., Stapleton, D., & Delbridge, L. M. D. (2013). Myocardial glycophagy—A specific glycogen handling response to metabolic stress is accentuated in the female heart. Journal of Molecular and Cellular Cardiology, 65, 67–75.CrossRefGoogle Scholar
  32. Revelle, W. (2018) psych: Procedures for psychological, psychometric, and personality research. Retrived from https://CRAN.R-project.org/package=psych
  33. Saito, K., Hirai, M. Y., & Yonekura-Sakakibara, K. (2008). Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’. Trends in Plant Science, 13, 36–43.CrossRefGoogle Scholar
  34. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.CrossRefGoogle Scholar
  35. Shao, D., Villet, O., Zhang, Z., Choi, S. W., Yan, J., Ritterhoff, J., Gu, H., Djukovic, D., Christodoulou, D., Kolwicz, S. C. Jr., Raftery, D., & Tian, R. (2018). Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 9, 2935.CrossRefGoogle Scholar
  36. Shen, X., Gong, X., Cai, Y., Guo, Y., Tu, J., Li, H., Zhang, T., Wang, J., Xue, F., & Zhu, Z.-J. (2016). Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics, 12, 89.CrossRefGoogle Scholar
  37. Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics, 13, 106.CrossRefGoogle Scholar
  38. Steuer, R. (2006). Review: on the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7, 151–158.CrossRefGoogle Scholar
  39. Team, R. C. (2017) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical ComputingGoogle Scholar
  40. Torkamani, A., Dean, B., Schork, N. J., & Thomas, E. A. (2010). Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Research, 20, 403–412.CrossRefGoogle Scholar
  41. Van Schaftingen, E., Lederer, B., Bartrons, R., & Hers, H. G. (1982). A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. European Journal of Biochemistry, 129, 191–195.CrossRefGoogle Scholar
  42. Voy, B. H., Scharff, J. A., Perkins, A. D., Saxton, A. M., Borate, B., Chesler, E. J., Branstetter, L. K., & Langston, M. A. (2006). Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Computational Biology, 2, e89.CrossRefGoogle Scholar
  43. Wang, L., Hou, E., Wang, L., Wang, Y., Yang, L., Zheng, X., Xie, G., Sun, Q., Liang, M., & Tian, Z. (2015). Reconstruction and analysis of correlation networks based on GC–MS metabolomics data for young hypertensive men. Analytica Chimica Acta, 854, 95–105.CrossRefGoogle Scholar
  44. Wang, Q., Donthi, R. V., Wang, J., Lange, A. J., Watson, L. J., Jones, S. P., & Epstein, P. N. (2008). Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia. American Journal of Physiology-Heart and Circulatory Physiology, 294, H2889–H2897.CrossRefGoogle Scholar
  45. Wang, Z., Ying, Z., Bosy-Westphal, A., Zhang, J., Schautz, B., Later, W., Heymsfield, S. B., & Müller, M. J. (2010). Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. The American Journal of Clinical Nutrition, 92, 1369–1377.CrossRefGoogle Scholar
  46. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440.CrossRefGoogle Scholar
  47. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
  48. Zhang, B., Tian, Y., & Zhang, Z. (2014). Network biology in medicine and beyond. Circulation, 7, 536–547.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityUS
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUS
  3. 3.Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUS

Personalised recommendations