Advertisement

Metabolomics

, 15:14 | Cite as

Phenolic variation among Chamaecrista nictitans subspecies and varieties revealed through UPLC-ESI(-)-MS/MS chemical fingerprinting

  • Luis Quirós-Guerrero
  • Federico Albertazzi
  • Emanuel Araya-Valverde
  • Rosaura M. Romero
  • Heidy Villalobos
  • Luis Poveda
  • Max Chavarría
  • Giselle Tamayo-CastilloEmail author
Original Article

Abstract

Introduction

Comparative analysis of metabolic features of plants has a high potential for determination of quality control of active ingredients, ecological or chemotaxonomic purposes. Specifically, the development of efficient and rapid analytical tools that allow the differentiation among species, subspecies and varieties of plants is a relevant issue. Here we describe a multivariate model based on LC–MS/MS fingerprinting capable of discriminating between subspecies and varieties of the medicinal plant Chamaecrista nictitans, a rare distributed species in Costa Rica.

Methods

Determination of the chemical fingerprint was carried out on a LC–MS (ESI-QTOF) in negative ionization mode, main detected and putatively identified compounds included proanthocyanidin oligomers, several flavonoid C- and O-glycosides, and flavonoid acetates. Principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and cluster analysis of chemical profiles were performed.

Results

Our method showed a clear discrimination between the subspecies and varieties of Chamaecrista nictitans, separating the samples into four fair differentiated groups: M1 = C. nictitans ssp. patellaria; M2 = C. nictitans ssp. disadena; M3 = C. nictitans ssp. nictitans var. jaliscensis and M4 = C. nictitans ssp. disadena var. pilosa. LC–MS/MS fingerprint data was validated using both morphological characters and DNA barcoding with ITS2 region. The comparison of the morphological characters against the chemical profiles and DNA barcoding shows a 63% coincidence, evidencing the morphological similarity in C. nictitans. On the other hand, genetic data and chemical profiles grouped all samples in a similar pattern, validating the functionality of our metabolomic approach.

Conclusion

The metabolomic method described in this study allows a reliably differentiation between subspecies and varieties of C. nictitans using a straightforward protocol that lacks extensive purification steps.

Keywords

Chamaecrista nictitans Chemotaxonomy Metabolite fingerprinting LC–MS/MS Chemical fingerprinting 

Notes

Acknowledgements

The authors wish to thank Vicerrectoría de Investigación of the University of Costa Rica, for their financial support (project number 809-B3-082) and the Herbarium of the University of Costa Rica (USJ) for supplying samples from the collection.

Author contributions

LQG, EAV, MC, RMR and GTC wrote the paper; LQG designed and did the LC–MS/MS experiments and MS data analysis; LQG, FA, LP and GTC collected the wild plant material; LP did the botanical identification; RMR did the in vitro culturing of wild plant material and provided greenhouse plantlets for the experiments, FA, HV, EAV and MC performed DNA extraction and ITS2 amplification and sequence analysis, LQG did the data mining and statistical analysis of MS data. GTC, FA and MC did the experimental design of the research.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Ethical statements

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Supplementary material

11306_2019_1475_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2870 KB)

References

  1. Alston, R. E., Rösler, H., Naifeh, K., & Mabry, T. J. (1965). Hybrid compounds in natural interspecific hybrids. Proceedings of the National Academy of Sciences of the United States of America, 54(5), 1458–1465.Google Scholar
  2. Ashfaq, M., Asif, M., Anjum, Z. I., & Zafar, Y. (2013). Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae). Molecular Ecology Resources, 13(4), 573–582.  https://doi.org/10.1111/1755-0998.12089.CrossRefPubMedGoogle Scholar
  3. Barbosa, A. R., Machado, M. C., Lewis, G. P., Forest, F., & De Queiroz, L. P. (2016). Re-establishment of Chamaecrista cultrifolia (Leguminosae, Caesalpinioideae) based on morphological and molecular analyses. Phytotaxa, 265(3), 183–203.  https://doi.org/10.11646/phytotaxa.265.3.1.CrossRefGoogle Scholar
  4. Benayad, Z., Gómez-Cordovés, C., & Es-Safi, N. (2014). Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. International Journal of Molecular Sciences, 15(11), 20668–20685.  https://doi.org/10.3390/ijms151120668.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Calderón, A. I., Wright, B. J., Hurst, W. J., & van Breemen, R. B. (2009). Screening antioxidants using LC-MS: case study with cocoa. Journal of Agricultural and Food Chemistry, 57(13), 5693–5699.  https://doi.org/10.1021/jf9014203.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5(1), 1–8.  https://doi.org/10.1371/journal.pone.0008613.CrossRefGoogle Scholar
  7. Chiou, S. J., Yen, J. H., Fang, C. L., Chen, H. L., & Lin, T. Y. (2007). Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. Planta Medica, 73(13), 1421–1426.  https://doi.org/10.1055/s-2007-990227.CrossRefPubMedGoogle Scholar
  8. Clark, B. R., Bliss, B. J., Suzuki, J. Y., & Borris, R. P. (2014). Chemotaxonomy of Hawaiian Anthurium cultivars based on multivariate analysis of phenolic metabolites. Journal of Agricultural and Food Chemistry, 62, 11323–11334.  https://doi.org/10.1021/jf502187c.CrossRefPubMedGoogle Scholar
  9. Consonni, R., Cagliani, L. R., & Cogliati, C. (2012). NMR based geographical characterization of roasted coffee. Talanta, 88, 420–426.  https://doi.org/10.1016/j.talanta.2011.11.010.CrossRefPubMedGoogle Scholar
  10. Del Bubba, M., Checchini, L., Chiuminatto, U., Doumett, S., Fibbi, D., & Giordani, E. (2012). Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. Journal of Mass Spectrometry, 47(9), 1207–1220.  https://doi.org/10.1002/jms.3030.CrossRefPubMedGoogle Scholar
  11. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.  https://doi.org/10.1093/nar/gkh340.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Farag, M. A., Maamoun, A. A., Ehrlich, A., Fahmy, S., & Wesjohann, L. A. (2017). Assessment of sensory metabolites distribution in 3 cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques. LWT-Food Science and Technology, 80, 145–154.  https://doi.org/10.1016/j.lwt.2017.02.014.CrossRefGoogle Scholar
  13. Farias, LdaS., & Mendez, A. (2014). LC/ESI-MS Method applied to characterization of flavonoids glycosides in B. forficata subsp. pruinosa. Quimica Nova, 37(3), 483–486.  https://doi.org/10.5935/0100-4042.20140069.CrossRefGoogle Scholar
  14. Ferreira, D., & Li, X. (2000). Oligomeric proanthocyanidins: Naturally occurring O-heterocycles. Natural Product Reports, 17, 193–212.  https://doi.org/10.1039/a705728h.CrossRefPubMedGoogle Scholar
  15. Friedrich, W., Eberhardt, a, & Galensa, R. (2000). Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. European Food Research and Technology, 211(1), 56–64.  https://doi.org/10.1007/s002170050589.CrossRefGoogle Scholar
  16. Gao, T., Yao, H., Song, J., Liu, C., Zhu, Y., Ma, X., et al. (2010). Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. Journal of Ethnopharmacology, 130(1), 116–121.  https://doi.org/10.1016/j.jep.2010.04.026.CrossRefPubMedGoogle Scholar
  17. Glauser, G., Boccard, J., Wolfender, J.-L., & Rudaz, S. (2013). Metabolomics: Application in plant sciences. In M. Lämmerhofer & W. Weckwerth (Eds.), Metabolomics in practice: Successful strategies to generate and analyze metabolic data (First., pp. 313–343). Hoboken: Wiley.  https://doi.org/10.1002/9783527655861.ch13.CrossRefGoogle Scholar
  18. Godfray, H. C. J., & Knapp, S. (2004). Taxonomy for the 21th century. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1444), 559–569.  https://doi.org/10.1098/rstb.2003.1457.CrossRefGoogle Scholar
  19. Govindaraghavan, S., Hennell, J. R., & Sucher, N. J. (2012). From classical taxonomy to genome and metabolome: Towards comprehensive quality standards for medicinal herb raw materials and extracts. Fitoterapia, 83(6), 979–988.  https://doi.org/10.1016/j.fitote.2012.05.001.CrossRefPubMedGoogle Scholar
  20. Güzel, Y., Aktoklu, E., Roumy, V., Alkhatib, R., Hennebelle, T., Bailleul, F., & Şahpaz, S. (2011). Chemotaxonomy and flavonoid profiling of Torilis species by HPLC/ESI/MS2. Biochemical Systematics and Ecology, 39(4–6), 781–786.  https://doi.org/10.1016/j.bse.2011.07.012.CrossRefGoogle Scholar
  21. Hall, T. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  22. Hammel, B. E., Grayum, M. H., Herrera, C., Zamora, N., & Troyo, S. (2010). Manual de plantas de Costa Rica, Volumen VI: Dicotiledoneas (Clusiaceae-Gunneraceae). Missouri: Monographs in Systematic Botany from Missouri Botanical Garden Press.Google Scholar
  23. Han, J., Zhu, Y., Chen, X., Liao, B., Yao, H., Song, J., et al. (2013). The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full-length ITS. BioMed Research International, 2013, 3–10.  https://doi.org/10.1155/2013/741476.CrossRefGoogle Scholar
  24. Hao, D. C., Gu, X.-J., & Xiao, P. G. (2015). Chemotaxonomy: A phylogeny-bases approach. Medicinal Plants.  https://doi.org/10.1016/B978-0-08-100085-4.00001-3.CrossRefGoogle Scholar
  25. Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., & Yoshida, T. (2002). Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59(7), 749–758.  https://doi.org/10.1016/S0031-9422(02)00051-1.CrossRefPubMedGoogle Scholar
  26. Hegnauer, R. (1986). Phytochemistry and plant taxonomy—An essay on the chemotaxonomy of higher plants. Phytochemistry, 25(7), 1519–1535.  https://doi.org/10.1016/S0031-9422(00)81204-2.CrossRefGoogle Scholar
  27. Herrero Uribe, L., Chaves Olarte, E., & Tamayo Castillo, G. (2004). In vitro antiviral activity of Chamaecrista nictitans (Fabaceae) against herpes simplex virus: Biological characterization of mechanisms of action. Revista de biología tropical, 52(3), 807–816.Google Scholar
  28. Herrmann, K. (1988). On the occurrence of flavonol and flavone glycosides in vegetables. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 186(1), 1–5.  https://doi.org/10.1007/BF01027170.CrossRefGoogle Scholar
  29. Hummer, K., Durst, R., Zee, F., Atnip, A., & Giusti, M. M. (2014). Phytochemicals in fruits of Hawaiian wild cranberry relatives. Journal of the Science of Food and Agriculture, 94(8), 1530–1536.  https://doi.org/10.1002/jsfa.6453.CrossRefPubMedGoogle Scholar
  30. Jaiswal, R., Kuhnert, N., Jayasinghe, L., & Kuhnert, N. (2012). Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC-MS. Journal of Mass Spectrometry: JMS, 47(12), 502–515.  https://doi.org/10.1002/jms.541.CrossRefPubMedGoogle Scholar
  31. Jiang, H., Xie, Z., Koo, H. J., McLaughlin, S. P., Timmermann, B. N., & Gang, D. R. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry, 67(15), 1673–1685.  https://doi.org/10.1016/j.phytochem.2005.08.001.CrossRefPubMedGoogle Scholar
  32. Kashif, A., Federica, M., Eva, Z., Martina, R., Young, H. C., & Robert, V. (2009). NMR metabolic fingerprinting based identification of grapevine metabolites associated with downy mildew resistance. Journal of Agricultural and Food Chemistry, 57(20), 9599–9606.  https://doi.org/10.1021/jf902069f.CrossRefGoogle Scholar
  33. Kharazian, N. (2014). Chemotaxonomy and flavonoid diversity of Salvia L. (Lamiaceae) in Iran. Acta Botanica Brasilica, 28(2), 281–292.  https://doi.org/10.1590/S0102-33062014000200015.CrossRefGoogle Scholar
  34. Kim, J., Jung, Y., Song, B., Bong, Y.-S., Ryu, D. H., Lee, K.-S., & Hwang, G.-S. (2013). Discrimination of cabbage (Brassica rapa ssp. pekinensis) cultivars grown in different geographical areas using 1H NMR-based metabolomics. Food Chemistry, 137(1–4), 68–75.  https://doi.org/10.1016/j.foodchem.2012.10.012.CrossRefPubMedGoogle Scholar
  35. Kim, Y. M., Lee, J., Park, S. H., Lee, C., Lee, J. W., Lee, D. H., et al. (2012). LC-MS-based chemotaxonomic classification of wild-type Lespedeza sp. and its correlation with genotype. Plant Cell Reports, 31(11), 2085–2097.  https://doi.org/10.1007/s00299-012-1319-8.CrossRefPubMedGoogle Scholar
  36. Klockmann, S., Reiner, E., Bachmann, R., Hackl, T., & Fischer, M. (2016). Food fingerprinting: Metabolomic approaches for geographical origin discrimination of hazelnuts (Corylus avellana) by UPLC-QTOF-MS. Journal of Agricultural and Food Chemistry, 64(48), 9253–9262.  https://doi.org/10.1021/acs.jafc.6b04433.CrossRefPubMedGoogle Scholar
  37. Le Gall, G., Dupont, M. S., Mellon, F. A., Davis, A. L., Collins, G. J., Verhoeyen, M. E., & Colquhoun, I. J. (2003). Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. Journal of Agricultural and Food Chemistry, 51(9), 2438–2446.  https://doi.org/10.1021/jf025995e.CrossRefPubMedGoogle Scholar
  38. Lee, E. J., Rustem, S., Weljie, A. M., Vogel, H. J., Facchini, P. J., Park, S. U., et al. (2009). Quality assessment of ginseng by1H NMR metabolite fingerprinting and profiling analysis. Journal of Agricultural and Food Chemistry, 57(16), 7513–7522.  https://doi.org/10.1021/jf901675y.CrossRefPubMedGoogle Scholar
  39. Lin, L., Sun, J., Chen, P., Monagas, M. J., & Harnly, J. M. (2014). UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. Journal of Agricultural and Food Chemistry, 62, 9387–9400.CrossRefGoogle Scholar
  40. Liu, Z., Liu, Y., Liu, C., Song, Z., Li, Q., Zha, Q., et al. (2013). The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chemistry Central Journal, 7(1), 118.  https://doi.org/10.1186/1752-153X-7-118.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liu, Z., Wang, D., Li, D., & Zhang, S. (2017). Quality evaluation of Juniperus rigida Sieb. et Zucc. based on phenolic profiles, bioactivity, and HPLC fingerprint combined with chemometrics. Frontiers in Pharmacology, 8(APR), 1–13.  https://doi.org/10.3389/fphar.2017.00198.CrossRefGoogle Scholar
  42. Luthria, D. L., Lin, L. Z., Robbins, R. J., Finley, J. W., Banuelos, G. S., & Harnly, J. M. (2008). Discriminating between cultivars and treatments of broccoli using mass spectral fingerprinting and analysis of variance-principal component analysis. Journal of Agricultural and Food Chemistry, 56(21), 9819–9827.  https://doi.org/10.1021/jf801606x.CrossRefPubMedGoogle Scholar
  43. Magagna, F., Guglielmetti, A., Liberto, E., Reichenbach, S. E., Allegrucci, E., Gobino, G., et al. (2017). Comprehensive chemical fingerprinting of high-quality cocoa at early stages of processing: Effectiveness of combined untargeted and targeted approaches for classification and discrimination. Journal of Agricultural and Food Chemistry.  https://doi.org/10.1021/acs.jafc.7b02167.CrossRefPubMedGoogle Scholar
  44. March, R. E., Lewars, E. G., Stadey, C. J., Miao, X.-S., Zhao, X., & Metcalfe, C. D. (2006). A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. International Journal of Mass Spectrometry, 248(1–2), 61–85.  https://doi.org/10.1016/j.ijms.2005.09.011.CrossRefGoogle Scholar
  45. March, R. E., Miao, X.-S., & Metcalfe, C. D. (2004). A fragmentation study of a flavone triglycoside, kaempferol-3-O-robinoside-7-O-rhamnoside. Rapid Communications in Mass Spectrometry: RCM, 18(9), 931–934.  https://doi.org/10.1002/rcm.1428.CrossRefPubMedGoogle Scholar
  46. Mateos-Martín, M. L., Fuguet, E., Jiménez-Ardón, A., Herrero-Uribe, L., Tamayo-Castillo, G., & Torres, J. L. (2014). Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC-ESI-MS/MS. Analytical and Bioanalytical Chemistry.  https://doi.org/10.1007/s00216-014-7982-6.CrossRefPubMedGoogle Scholar
  47. Mattoli, L., Cangi, F., Maidecchi, A., Ghiara, C., Raggazi, E., Tubaro, M., et al. (2006). Metabolic fingerprinting of plant extracts. Journal of Mass Spectrometry: JMS, 41, 1534–1545.  https://doi.org/10.1002/jms.CrossRefPubMedGoogle Scholar
  48. Mayorga-Gross, A. L., Quirós-Guerrero, L. M., Fourny, G., & Vaillant, F. (2016). An untargeted metabolomic assessment of cocoa beans during fermentation. Food Research International, 89, 901–909.  https://doi.org/10.1016/j.foodres.2016.04.017.CrossRefGoogle Scholar
  49. Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., Atlabachew, M., & McCrindle, R. (2016). Profiling of phenolic compounds using UPLC-MS for determining the geographical origin of green coffee beans from Ethiopia. Journal of Food Composition and Analysis, 45, 16–25.  https://doi.org/10.1016/j.jfca.2015.09.006.CrossRefGoogle Scholar
  50. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.CrossRefGoogle Scholar
  51. Musah, R. A., Espinoza, E. O., Cody, R. B., Lesiak, A. D., Christensen, E. D., Moore, H. E., et al. (2015). A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures. Nature Publishing Group, 5(May), 1–16.  https://doi.org/10.1038/srep11520.CrossRefGoogle Scholar
  52. Onagas, M. A. M., Arrido, I. G. G., Guilar, R. O. S. A. L. E., Artolome, B. E. B., & Ordovés, C. A. G. Ó. (2007). Almond (Prunus dulcis (Mill.) D. A. Webb) skins as a potential source of bioactive polyphenols. Journal of Agricultural and Food Chemistry, 55, 8498–8507.CrossRefGoogle Scholar
  53. Pan, Y., Zhang, J., Li, H., Wang, Y. Z., & Li, W. Y. (2016). Characteristic fingerprinting based on macamides for discrimination of maca (Lepidium meyenii) by LC/MS/MS and multivariate statistical analysis. Journal of the Science of Food and Agriculture.  https://doi.org/10.1002/jsfa.7660.CrossRefPubMedGoogle Scholar
  54. Peng, F., Cheng, C., Xie, Y., & Yang, Y. (2015). Optimization of microwave-assisted extraction of phenolic compounds from “Anli” pear (Pyrus ussuriensis Maxim). Food Science and Technology Research, 21(3), 463–471.  https://doi.org/10.3136/fstr.21.463.CrossRefGoogle Scholar
  55. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.  https://doi.org/10.1186/1471-2105-11-395.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T., & Kobayashi, A. (2007). Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. Journal of Agricultural and Food Chemistry, 55(2), 231–236.  https://doi.org/10.1021/jf062330u.CrossRefPubMedGoogle Scholar
  57. Ronningen, I., Miller, M., Xia, Y., & Peterson, D. G. (2017). Identification and validation of sensory-active compounds from data-driven research: A flavoromics approach. Journal of Agricultural and Food Chemistry.  https://doi.org/10.1021/acs.jafc.7b00093.CrossRefPubMedGoogle Scholar
  58. Ryan, D., & Robards, K. (2006). Metabolomics: The greatest omics of them all? Analytical Chemistry, 78(23), 7954–7958.  https://doi.org/10.1021/ac0614341.CrossRefPubMedGoogle Scholar
  59. Sakushima, A., & Nishibe, S. (1988). Mass spectrometry in the structural determination flavonol triglycosides from VLNCA major. Phytochemistry, 27(3), 915–919.  https://doi.org/10.1016/0031-9422(88)84119-0.CrossRefGoogle Scholar
  60. Saleh, N. A. M., Ahmed, A. A., & Abdalla, M. F. (1982). Flavonoid glycosides of Tribulus pentandrus and T. terrestris. Phytochemistry, 21(8), 1995–2000.  https://doi.org/10.1016/0031-9422(82)83030-6.CrossRefGoogle Scholar
  61. Salvador, A. C., Rudnitskaya, A., Silvestre, A. J. D., & Rocha, S. M. (2016). Metabolomic-based strategy for fingerprinting of Sambucus nigra L. berry volatile terpenoids and norisoprenoids: Influence of ripening and cultivar. Journal of Agricultural and Food Chemistry, 64(26), 5428–5438.  https://doi.org/10.1021/acs.jafc.6b00984.CrossRefPubMedGoogle Scholar
  62. Sarker, S. D., & Nahar, L. (2012). Chapter 12 Hyphenated techniques and their applications in natural products analysis (Vol. 864). New York: Springer.  https://doi.org/10.1007/978-1-61779-624-1.CrossRefGoogle Scholar
  63. Semmar, N., Jay, M., & Nouira, S. (2007). A new approach to graphical and numerical analysis of links between plant chemotaxonomy and secondary metabolism from HPLC data smoothed by a simplex mixture design. Chemoecology, 17(3), 139–155.  https://doi.org/10.1007/s00049-007-0374-z.CrossRefGoogle Scholar
  64. Sharaf, M., El-Ansari, M. A., & Saleh, N. A. M. (1997). Flavonoids of four Cleome and three Capparis species. Biochemical Systematics and Ecology, 25(2), 161–166.  https://doi.org/10.1016/S0305-1978(96)00099-3.CrossRefGoogle Scholar
  65. Sobeh, M., Mahmoud, M. F., Abdelfattah, M. A. O., Cheng, H., El-Shazly, A. M., & Wink, M. (2018). A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. Journal of Ethnopharmacology, 213(May 2017), 38–47.  https://doi.org/10.1016/j.jep.2017.11.007.CrossRefPubMedGoogle Scholar
  66. Stobiecki, M. (2000). Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry, 54(3), 237–256.  https://doi.org/10.1016/S0031-9422(00)00091-1.CrossRefPubMedGoogle Scholar
  67. Stobiecki, M., Kachlicki, P., & Wojakowska, A. (2015). Application of LC/MS systems to structural characterization of flavonoid glycoconjugates. Phytochemistry Letters, 11, 358–367.  https://doi.org/10.1016/j.phytol.2014.10.018.CrossRefGoogle Scholar
  68. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.  https://doi.org/10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Treviño, V., Yañez-Garza, I., Rodriguez-López, C. E., Urrea-López, R., Garza-Rodriguez, M.-L., Tamez-Peña, J. G., et al. (2015). GridMass: A fast two-dimensional feature detection method for LC/MS. Journal of Mass Spectrometry.  https://doi.org/10.1002/jms.3512.CrossRefPubMedGoogle Scholar
  70. Tropicos. (2017). http://www.tropicos.org/home.aspx. Accessed 20 July 2007.
  71. Venkataraman, K. (1972). Wood Phenolics in the chemotaxonomy of the Moraceae. Phytochemistry, 11(1964), 1571–1586.  https://doi.org/10.1016/0031-9422(72)85002-7.CrossRefGoogle Scholar
  72. Visnevschi-Necrasov, T., Barreira, J. C. M., Cunha, S. C., Pereira, G., Nunes, E., & Oliveira, M. B. P. P. (2015). Phylogenetic insights on the isoflavone profile variations in Fabaceae spp.: Assessment through PCA and LDA. Food Research International, 76, 51–57.  https://doi.org/10.1016/j.foodres.2014.11.032.CrossRefGoogle Scholar
  73. Walker, J. M. (2014). Methods in molecular biology 1115: Molecular Plant Taxonomy. (P. Besse, Ed.). Clifton, NJ: Humana Press.  https://doi.org/10.1007/978-1-62703-767-9.CrossRefGoogle Scholar
  74. Watson, D. G., Peyfoon, E., Zheng, L., Lu, D., Seidel, V., Johnston, B., et al. (2006). Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin. Phytochemical Analysis, 17(5), 323–331.  https://doi.org/10.1002/pca.921.CrossRefPubMedGoogle Scholar
  75. Williams, D., Stone, M., Hauck, P., & Rahman, S. (1989). Why are secondary metabolites (natural products) biosynthesized? Journal of Natural Products, 52(6), 1189–1208.  https://doi.org/10.1021/np50066a001.CrossRefPubMedGoogle Scholar
  76. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3–19.  https://doi.org/10.1016/S0031-9422(03)00300-5.CrossRefPubMedGoogle Scholar
  77. Wink, M. (2010). Biochemistry of plant secondary metabolism. Chichester: Wiley.  https://doi.org/10.1002/9781444320503.CrossRefGoogle Scholar
  78. Wink, M. (2013). Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of Botany, 89, 164–175.  https://doi.org/10.1016/j.sajb.2013.06.006.CrossRefGoogle Scholar
  79. Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., et al. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE.  https://doi.org/10.1371/journal.pone.0013102.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zieliński, Ł, Deja, S., Jasicka-Misiak, I., & Kafarski, P. (2014). Chemometrics as a tool of origin determination of polish monofloral and multifloral honeys. Journal of Agricultural and Food Chemistry, 62(13), 2973–2981.  https://doi.org/10.1021/jf4056715.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Luis Quirós-Guerrero
    • 1
    • 2
  • Federico Albertazzi
    • 3
    • 4
  • Emanuel Araya-Valverde
    • 5
    • 7
  • Rosaura M. Romero
    • 1
    • 2
  • Heidy Villalobos
    • 2
    • 3
  • Luis Poveda
    • 6
  • Max Chavarría
    • 1
    • 2
    • 5
  • Giselle Tamayo-Castillo
    • 1
    • 2
    Email author
  1. 1.Centro de Investigaciones en Productos Naturales (CIPRONA)Universidad de Costa RicaSan JoseCosta Rica
  2. 2.Escuela de QuímicaUniversidad de Costa RicaSan JoseCosta Rica
  3. 3.Centro de Investigación en Biología Celular y Molecular (CIBCM)Universidad de Costa RicaSan JoseCosta Rica
  4. 4.Escuela de BiologíaUniversidad de Costa RicaSan JoseCosta Rica
  5. 5.Centro Nacional de Innovaciones Biotecnológicas (CENiBiot)CeNAT-CONARESan JoseCosta Rica
  6. 6.Herbario Juvenal Valerio RodríguezUniversidad NacionalHerediaCosta Rica
  7. 7.Escuela de BiologíaInstituto Tecnológico de Costa RicaCartagoCosta Rica

Personalised recommendations