Advertisement

Metabolomics

, 15:8 | Cite as

Metabolomic approaches to polyamines including acetylated derivatives in lung tissue of mice with asthma

  • Hyeon-Seong Lee
  • Chan Seo
  • Yun-Ho Hwang
  • Tae Hwan Shin
  • Hyung-Jin Park
  • Youngbae Kim
  • Moongi Ji
  • Jeuk Min
  • Subin Choi
  • Hangun Kim
  • Ae Kyung Park
  • Sung-Tae Yee
  • Gwang Lee
  • Man-Jeong PaikEmail author
Original Article

Abstract

Introduction

Recently, the relationship between polyamine (PA) metabolism and asthma has been studied in severe asthmatic therapy, but systematic PA metabolism including their acetylated derivatives was not fully understood.

Objectives

Profiling analysis of polyamines (PAs) was performed to understand the biochemical events and monitor altered PA metabolism in lung tissue of mice with asthma.

Methods

Polyamine profiling of lung tissue of mice with asthma was performed without derivatization by liquid chromatography–tandem mass spectrometry (LC–MS/MS) combined with star pattern recognition analysis. The PA levels between control and asthma groups were evaluated by multivariate analysis.

Results

In mouse lung tissue, seven PAs were determined by LC–MS/MS in multiple reaction monitoring (MRM) mode. Their levels were normalized to the corresponding mean levels of the control group for star pattern analysis, which showed distorted heptagonal shapes with characteristic and readily distinguishable patterns for each group. Levels of putrescine (p < 0.0034), N1-acetylputrescine (p < 0.0652), and N8-acetylspermidine (p < 0.0827) were significantly increased in asthmatic lung tissue. The separation of the two groups was evaluated using multivariate analysis. In unsupervised learning, acetylated PAs including N1-acetylspermine were the main metabolites for discrimination. In supervised learning, putrescine and N1-acetylputrescine were evaluated as important metabolites.

Conclusions

The present results provide basic data for understanding polyamine metabolism in asthma and may help to improve the therapy for severe asthma patients.

Keywords

Metabolomics Polyamine profiling analysis Acetylated polyamines Asthma Lung tissue Star pattern recognition analysis Liquid chromatography–tandem mass spectrometry 

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science, ICT & Future Planning (2015R1A4A1041219), the Ministryof Education, Science, and Technology (2015R1D1A3A01016103) and by the Suncheon Research Center for Natural Medicines.

Author contributions

H-SL performed method development, optimization and validation including application to asthma mice. Y-HH performed sampling of asthma model. CS, MJ and JM performed optimization of method. HJP, YK, THS and SC performed pre-analytical experiments and sample preparation. AKP performed interpretation of statistical analysis. HK, S-TY and GL performed interpretation of the results. M-JP designed the experiments and supervised this work. All of authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Institutional Animal Care and Use Committee in the Sunchon National University.

References

  1. Babbar, N., Gerner, E. W., & Casero, R. A. (2006). Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochemical Journal, 394, 317–324.  https://doi.org/10.1042/BJ20051298.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Babbar, N., Murray-Stewart, T., & Casero, R. (2007). Inflammation and polyamine catabolism: The good, the bad and the ugly. Portland Press Limited. Biochemical Society Transactions, 35(2), 300–304.  https://doi.org/10.1042/BST0350300.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bousquet, J., Jeffery, P. K., Busse, W. W., Johnson, M., & Vignola, A. M. (2000). Asthma: From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine, 161, 1720–1745.  https://doi.org/10.1164/ajrccm.161.5.9903102.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Casero, R. A., Celano, P., Ervin, S. J., Porter, C. W., Bergeron, R. J., & Libby, P. R. (1989). Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis (ethyl) polyamine analogues. Cancer Research, 49, 3829–3833.PubMedPubMedCentralGoogle Scholar
  5. Casero, R. A. Jr., & Pegg, A. E. (1993). Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. The FASEB Journal, 7, 653–661.  https://doi.org/10.1096/fasebj.7.8.8500690.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Hector, S., Porter, C. W., Kramer, D. L., Clark, K., Prey, J., Kisiel, N., et al. (2004). Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1, N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Molecular Cancer Therapeutics, 3, 813–822.PubMedPubMedCentralGoogle Scholar
  7. Jain, V. (2018). Role of polyamines in asthma pathophysiology. Medical Sciences, 6, 4.  https://doi.org/10.3390/medsci6010004.CrossRefGoogle Scholar
  8. Kim, H., Lee, H., Shin, T., Jung, J., Baek, W., Park, H., et al. (2018). Polyamine patterns in plasma of patients with systemic lupus erythematosus and fever. Lupus, 27, 930–938.  https://doi.org/10.1177/0961203317751860.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kim, J.-W., Lee, G., Moon, S.-M., Park, M.-J., Hong, S. K., Ahn, Y.-H., et al. (2010). Metabolomic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients. Metabolomics, 6, 202–206.  https://doi.org/10.1007/s11306-010-0199-6.CrossRefGoogle Scholar
  10. Kurosawa, M., Shimizu, Y., Tsukagoshi, H., & Ueki, M. (1992). Elevated levels of peripheral-blood, naturally occurring aliphatic polyamines in bronchial asthmatic patients with active symptoms. Allergy, 47, 638–643.  https://doi.org/10.1111/j.1398-9995.1992.tb02388.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Maxwell, P. J., Longley, D. B., Latif, T., Boyer, J., Allen, W., Lynch, M., et al. (2003). Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer research, 63, 4602–4606.PubMedPubMedCentralGoogle Scholar
  12. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., & Ralser, M. (2015). Remaining mysteries of molecular biology: The role of polyamines in the cell. Journal of Molecular Biology, 427, 3389–3406.  https://doi.org/10.1016/j.jmb.2015.06.020.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Minois, N., Carmona-Gutierrez, D., & Madeo, F. (2011). Polyamines in aging and disease. Aging (Albany NY), 3, 716.  https://doi.org/10.18632/aging.100361.CrossRefGoogle Scholar
  14. North, M. L., Grasemann, H., Khanna, N., Inman, M. D., Gauvreau, G. M., & Scott, J. A. (2013). Increased ornithine-derived polyamines cause airway hyperresponsiveness in a mouse model of asthma. American Journal of Respiratory Cell and Molecular Biology, 48, 694–702.  https://doi.org/10.1165/rcmb.2012-0323OC.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nowotarski, S. L., Woster, P. M., & Casero, R. A. (2013). Polyamines and cancer: Implications for chemotherapy and chemoprevention. Expert Reviews in Molecular Medicine.  https://doi.org/10.1017/erm.2013.3. 15 .CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ohe, M., Sasaki, H., Niitsu, M., Bagni, N., Tassoni, A., & Matsuzaki, S. (2010). Cadaverine turnover in soybean seedlings using 15N-labelled lysine and cadaverine. Plant Physiology and Biochemistry, 48, 591–595.  https://doi.org/10.1016/j.plaphy.2010.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Paik, M. J., Li, W. Y., Ahn, Y. H., Lee, P. H., Choi, S., Kim, K. R., et al. (2009). The free fatty acid metabolome in cerebral ischemia following human mesenchymal stem cell transplantation in rats. Clinica Chimica Acta, 402, 25–30.  https://doi.org/10.1016/j.cca.2008.12.022.CrossRefGoogle Scholar
  18. Pegg, A. E. (2008). Spermidine/spermine-N 1-acetyltransferase: A key metabolic regulator. American Journal of Physiology-Endocrinology and Metabolism, 294, E995–E1010.  https://doi.org/10.1152/ajpendo.90217.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pegg, A. E. (2016). Functions of polyamines in mammals. Journal of Biological Chemistry R116, 731661.  https://doi.org/10.1074/jbc.R116.731661.CrossRefGoogle Scholar
  20. Pirnes-Karhu, S., Sironen, R., Alhonen, L., & Uimari, A. (2012). Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N 1-acetyltransferase (SSAT) overexpressing mice. Amino acids, 42, 473–484.  https://doi.org/10.1007/s00726-011-1026-8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Porter, C. W., Ganis, B., Libby, P. R., & Bergeron, R. J. (1991). Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Research, 51, 3715–3720.PubMedPubMedCentralGoogle Scholar
  22. Seiler, N. (2004). Catabolism of polyamines. Amino acids, 26, 217–233.  https://doi.org/10.1007/s00726-004-0070-z.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Seiler, N., & Raul, F. (2005). Polyamines and apoptosis. Journal of Cellular and Molecular Medicine, 9, 623–642.  https://doi.org/10.1111/j.1582-4934.2005.tb00493.x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shin, T. H., Kim, H.-A., Jung, J.-Y., Baek, W.-Y., Lee, H.-S., Park, H. J., et al. (2018). Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever. Metabolomics, 14, 14.  https://doi.org/10.1007/s11306-017-1308-6.CrossRefGoogle Scholar
  25. Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53, 749–790.  https://doi.org/10.1146/annurev.bi.53.070184.003533.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wallace, H. M., Nuttall, M. E., & Coleman, C. S. (1988). Polyamine recycling enzymes in human cancer cells. In V. Zappia, A. E. Pegg (Eds.), Progress in Polyamine Research (pp. 331–344). Boston: Springer.  https://doi.org/10.1007/978-1-4684-5637-0_29.CrossRefGoogle Scholar
  27. Wang, J.-Y., & Casero, R. A. (2006). Polyamine cell signaling: Physiology, pharmacology, and cancer research. New York: Springer.  https://doi.org/10.1007/978-1-59745-145-1.CrossRefGoogle Scholar
  28. Wang, Y., & Casero, R. A. Jr. (2006). Mammalian polyamine catabolism: A therapeutic target, a pathological problem, or both? Journal of Biochemistry, 139, 17–25.  https://doi.org/10.1093/jb/mvj021.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wenzel, S. E. (2012). Asthma phenotypes: The evolution from clinical to molecular approaches. Nature Medicine, 18, 716.  https://doi.org/10.1038/nm.2678.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wood, L. G., Baines, K. J., Fu, J., Scott, H. A., & Gibson, P. G. (2012). The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest, 142, 86–93.  https://doi.org/10.1378/chest.11-1838.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1, 92–107.  https://doi.org/10.2174/2213235X11301010092.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yoon, B.-E., & Lee, C. J. (2014). GABA as a rising gliotransmitter. Frontiers in Neural Circuits, 8, 141.  https://doi.org/10.3389/fncir.2014.00141.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hyeon-Seong Lee
    • 1
  • Chan Seo
    • 1
  • Yun-Ho Hwang
    • 1
  • Tae Hwan Shin
    • 2
  • Hyung-Jin Park
    • 2
  • Youngbae Kim
    • 1
  • Moongi Ji
    • 1
  • Jeuk Min
    • 1
  • Subin Choi
    • 1
  • Hangun Kim
    • 1
  • Ae Kyung Park
    • 1
  • Sung-Tae Yee
    • 1
  • Gwang Lee
    • 2
  • Man-Jeong Paik
    • 1
    • 3
    Email author
  1. 1.College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National UniversitySuncheonRepublic of Korea
  2. 2.Department of Physiology, Department of Biomedical SciencesAjou University School of MedicineSuwonRepublic of Korea
  3. 3.College of PharmacySunchon National UniversitySuncheonRepublic of Korea

Personalised recommendations