, 14:160 | Cite as

Nitrogen deprivation in Fusarium oxysporum promotes mycotoxin production via intermediates in the Krebs cycle and unreported methylmalonyl-CoA mutase activity

  • A. V. Karpe
  • M. S. Dunn
  • M. C. Taylor
  • T. Nguyen
  • C. Ong
  • T. Karla
  • S. Rockman
  • D. J. Beale
Original Article



Fusarium oxysporum has a high affinity for lignin and cellulose-based substrates and is known to grow in a wide range of environments. It is these properties and its ability to produce mycotoxins that have contributed to its pathogenicity in cereal crops that can affect human and animal health when ingested.


Identify the mechanisms of mycotoxin production and map the functional output of F. oxysporum under varying growth conditions.


Liquid and gas-based chromatography coupled with mass spectrometry was used to identify and map the untargeted metabolic pathway of F. oxysporum grown using nitrogen limited and organic/inorganic nitrogen supplemented media.


Over 1300 metabolites were identified, relating to 42 metabolic pathways. Of these, 520 metabolites merged at pyruvate (glycolysis), succinate (Krebs cycle) and aspartate-glutamate metabolic pathways. CoA depletion at the growth stage triggered the initiation of fatty acid and branched amino acid degradation. This in turn activated propionyl CoA carnitine acetyltransferase enzymes, resulting in nitrogen preservation (urea, putrescine and organic acids end-products). CoA then transferred into the TCA cycle via previously unreported β-alanine and propionyl CoA metabolic pathways, the latter likely being a novel methylmalonyl-CoA mutase activity for F. oxysporum.


The lower supplementation of inorganic nitrogen compounds (≤ 50 mM) and the elimination of nitrates/organic nitrogen sources resulted in TCA autophagy events that boosted mycotoxin-based metabolism and decreased overall F. oxysporum growth. Such knowledge of functional mycotoxin production can be used to supplement agricultural crops and reduce the risk of mycotoxin contamination in human and animal food supplies.


Metabolomics LC-MS GC-MS Fusarium mycotoxins Nitrogen rescue CoA stress Aspartate 


Author contributions

AVK and MSD performed the data analysis and co-wrote the paper; MCT performed the LC and GC analysis; TN, CO, and TK isolated the fungi and carried out the fungal experiments; SR and DJB devised and supervised the project. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Supplementary material

11306_2018_1459_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2900 KB)


  1. Beale, D. J., Karpe, A. V., & Ahmed, W. (2016). Beyond metabolomics: A review of multi-omics-based approaches. In Microbial metabolomics (pp. 289–312). New York: Springer.CrossRefGoogle Scholar
  2. Beale, D. J., Pinu, F. R., Kouremenos, K. A., Poojary, M. M., Narayana, V. K., Boughton, B. A., et al. (2018). Review of recent developments in gc–ms approaches to metabolomics-based research. Metabolomics, 14, 152.CrossRefGoogle Scholar
  3. Bouras, N., Holtz, M. D., Aboukhaddour, R., & Strelkov, S. E. (2016). Influence of nitrogen sources on growth and mycotoxin production by isolates of pyrenophora tritici-repentis from wheat. The Crop Journal, 4, 119–128.CrossRefGoogle Scholar
  4. Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., Mamas, M. A., Neyses, L., & Dunn, W. B. (2011). Automated workflows for accurate mass-based putative metabolite identification in lc/ms-derived metabolomic datasets. Bioinformatics, 27, 1108–1112.CrossRefGoogle Scholar
  5. Carroll, A. J., Zhang, P., Whitehead, L., Kaines, S., Tcherkez, G., & Badger, M. R. (2015). Phenometer: A metabolome database search tool using statistical similarity matching of metabolic phenotypes for high-confidence detection of functional links. Frontiers in Bioengineering and Biotechnology, 3, 106.CrossRefGoogle Scholar
  6. Chen, J., Sutter, B. M., Shi, L., & Tu, B. P. (2017). Gator1 regulates nitrogenic cataplerotic reactions of the mitochondrial tca cycle. Nature Chemical Biology, 13, 1179.CrossRefGoogle Scholar
  7. Christakopoulos, P., Macris, B. J., & Kekos, D. (1989). Direct fermentation of cellulose to ethanol by fusarium oxysporum. Enzyme and Microbial Technology, 11, 236–239.CrossRefGoogle Scholar
  8. Dalpé, Y., Trépanier, M., Sahraoui, A. L.-H., Fontaine, J., & Sancholle, M. (2012). 8 lipids of mycorrhizas. In B. Hock (Ed.), Fungal associations (pp. 137–169). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  9. Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., et al. (2007). The metabolomics standards initiative (msi). Metabolomics, 3, 175–178.CrossRefGoogle Scholar
  10. Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23.CrossRefGoogle Scholar
  11. Gunnaiah, R. (2013). Functional characterization of wheat fusarium head blight resistance qtl (fhb1) based on non-targeted metabolomics and proteomics. Montreal: McGill University.Google Scholar
  12. Haider, S., & Pal, R. (2013). Integrated analysis of transcriptomic and proteomic data. Current Genomics, 14, 91–110.CrossRefGoogle Scholar
  13. HiMedia (2012) Rm006: Mycological peptone Culture media bases, HiMedia Laboratories Pvt. Ltd.Google Scholar
  14. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). Massbank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45, 703–714.CrossRefGoogle Scholar
  15. Jonkers, W., Rodrigues, C. D. A., & Rep, M. (2009). Impaired colonization and infection of tomato roots by the δfrp1 mutant of fusarium oxysporum correlates with reduced cwde gene expression. Molecular Plant-Microbe Interactions, 22, 507–518.CrossRefGoogle Scholar
  16. Karine, P., Paul, A., André, G., & Russell, J. T. (2006). Fatty acid composition of lipids from mushrooms belonging to the family boletaceae. Mycological Research, 110, 1179–1183.CrossRefGoogle Scholar
  17. Karpe, A. V., Beale, D. J., Godhani, N. B., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2016). Untargeted metabolic profiling of winery-derived biomass waste degradation by aspergillus niger. Journal of Chemical Technology & Biotechnology, 91, 1505–1516.CrossRefGoogle Scholar
  18. Karpe, A. V., Beale, D. J., Morrison, P. D., Harding, I. H., Palombo, E. A., & Boden, R. (2015). Untargeted metabolic profiling of vitis vinifera during fungal degradation. FEMS Microbiology Letters, 362, fnv060–fnv060.CrossRefGoogle Scholar
  19. Kazan, K., & Gardiner, D. M. (2017). Transcriptomics of cereal–fusarium graminearum interactions: What we have learned so far. Molecular Plant Pathology, 19(3), 764–778.CrossRefGoogle Scholar
  20. Kosová, K., Chrpová, J., Šantrůček, J., Hynek, R., Štěrbová, L., Vítámvás, P., Bradová, J., & Prášil, I. T. (2017). The effect of fusarium culmorum infection and deoxynivalenol (don) application on proteome response in barley cultivars chevron and pedant. Journal of Proteomics, 169, 112–124.CrossRefGoogle Scholar
  21. Kumar, Y., Zhang, L., Panigrahi, P., Dholakia, B. B., Dewangan, V., Chavan, S. G., et al. (2016). Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics. Plant Biotechnology Journal, 14, 1589–1603.CrossRefGoogle Scholar
  22. Li, J., Pan, Y., & Liu, G. (2013). Disruption of the nitrogen regulatory gene acarea in acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genetics and Biology, 61, 69–79.CrossRefGoogle Scholar
  23. López-Berges, M. S., Schäfer, K., Hera, C., & Di Pietro, A. (2014). Combinatorial function of velvet and area in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genetics and Biology, 62, 78–84.CrossRefGoogle Scholar
  24. López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A., & López-Berges, M. S. (2017). Fusaric acid contributes to virulence of fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology. Scholar
  25. Luo, F., Zhong, Z., Liu, L., Igarashi, Y., Xie, D., & Li, N. (2017). Metabolomic differential analysis of interspecific interactions among white rot fungi trametes versicolor, dichomitus squalens and pleurotus ostreatus. Scientific Reports, 7, 5265.CrossRefGoogle Scholar
  26. Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10, 311–324.CrossRefGoogle Scholar
  27. Nazari, F., Sulyok, M., Kobarfard, F., Yazdanpanah, H., & Krska, R. (2015). Evaluation of emerging fusarium mycotoxins beauvericin, enniatins, fusaproliferin and moniliformin in domestic rice in iran. Iranian Journal of Pharmaceutical Research: IJPR, 14, 505–512.PubMedGoogle Scholar
  28. Oxoid. (2017a). Czapek dox agar (modified): Cm0097. In Dehydrated Culture Media. Walthman: Thermo Fisher Scientific Inc.Google Scholar
  29. Oxoid. (2017b). Potato dextrose agar (ep/usp/jp/bp). In Dehydrated Culture Media. Walthman: Thermo Fisher Scientific Inc..Google Scholar
  30. Oxoid. (2017c). Sabouraud dextrose agar code: Cm0041. In Dehydrated Culture Media. Walthman: Thermo Fisher Scientific Inc..Google Scholar
  31. Panagiotou, G., Villas-Bôas, S. G., Christakopoulos, P., Nielsen, J., & Olsson, L. (2005). Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. Journal of Biotechnology, 115, 425–434.CrossRefGoogle Scholar
  32. Pfannmüller, A., Leufken, J., Studt, L., Michielse, C. B., Sieber, C. M. K., Güldener, U., et al. (2017). Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators area and areb on secondary metabolism in fusarium fujikuroi. PLoS ONE, 12, e0176194.CrossRefGoogle Scholar
  33. Romero, F. M., Marina, M., Pieckenstain, F. L., Rossi, F. R., Gonzalez, M. E., Vignatti, P., & Gárriz, A. (2017). Gaining insight into plant responses to beneficial and pathogenic microorganisms using metabolomic and transcriptomic approaches. In V. C. Kalia & A. K. Saini (Eds.), Metabolic engineering for bioactive compounds: Strategies and processes (pp. 113–140). Singapore: Springer.CrossRefGoogle Scholar
  34. Sazanova, K. V., Vlasov, D. Y., Osmolovskay, N. G., Schiparev, S. M., & Rusakov, A. V. (2016). Significance and regulation of acids production by rock-inhabited fungi. In O. V. Frank-Kamenetskaya, E. G. Panova & D. Y. Vlasov (Eds.), Biogenic—abiogenic interactions in natural and anthropogenic systems (pp. 379–392). Cham: Springer.CrossRefGoogle Scholar
  35. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R., & Siuzdak, G. (2005). Metlin: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751.CrossRefGoogle Scholar
  36. Steiber, A., Kerner, J., & Hoppel, C. L. (2004). Carnitine: A nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine, 25, 455–473.CrossRefGoogle Scholar
  37. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.CrossRefGoogle Scholar
  38. Tan, K.-C., & Oliver, R. P. (2014). 12 metabolomics and proteomics to dissect fungal phytopathogenicity. In M. Nowrousian (Ed.), Fungal genomics (pp. 301–319). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  39. Vanella, A., Russo, A., Acquaviva, R., Campisi, A., Di Giacomo, C., Sorrenti, V., & Barcellona, M. L. (2000). L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biology and Toxicology, 16, 99–104.CrossRefGoogle Scholar
  40. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). Hmdb 3.0—the human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.CrossRefGoogle Scholar
  41. Xia, J., & Wishart, D. S. (2016). Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 14.10.1–14.10.91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Land & Water, CSIRO, Ecosciences PrecinctDutton ParkAustralia
  2. 2.Technical Development, SeqirusParkvilleAustralia
  3. 3.Land & Water, CSIROActonAustralia

Personalised recommendations