, 14:152 | Cite as

Review of recent developments in GC–MS approaches to metabolomics-based research

  • David J. BealeEmail author
  • Farhana R. Pinu
  • Konstantinos A. Kouremenos
  • Mahesha M. Poojary
  • Vinod K. Narayana
  • Berin A. Boughton
  • Komal Kanojia
  • Saravanan Dayalan
  • Oliver A. H. Jones
  • Daniel A. DiasEmail author
Review Article



Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC–MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and ‘in house’ metabolite databases available.

Aim of review

This review provides an overview of developments in GC–MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC–MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics.

Key scientific concepts of review

The purpose of this review is to both highlight and provide an update on GC–MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC–MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.


Metabolic profiling Derivatization Metabolomics Mass spectrometry Bioinformatics 


Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. Abbiss, H., Rawlinson, C., Maker, G. L., & Trengove, R. (2015). Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics, 11, 1908–1921.Google Scholar
  2. Adusumilli, R., & Mallick, P. (2017). Data conversion with proteowizard msconvert. Methods in Molecular Biology, 1550, 339–368.PubMedGoogle Scholar
  3. Aini, N. M., Yusoff, M. M., & Azhari, H. A. (2009) Chromatographic methods to analyze geometrical and positional isomers of fatty acids: A review. In Proceedings of national conference on postgraduate research (pp. 165–174). UMP Conference Hall, Malaysia.Google Scholar
  4. Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 132, 117–135.PubMedGoogle Scholar
  5. Álvarez-Sánchez, B., Priego-Capote, F., & de Castro, M.L. (2010). Metabolomics analysis II. Preparation of biological samples prior to detection. TrAC Trends in Analytical Chemistry, 29, 120–127.Google Scholar
  6. Armitage, E. G., Godzien, J., Alonso-Herranz, V., Lopez-Gonzalvez, A., & Barbas, C. (2015). Missing value imputation strategies for metabolomics data. Electrophoresis, 36, 3050–3060.PubMedGoogle Scholar
  7. Arrebola, J. P., Pumarega, J., Gasull, M., Fernandez, M. F., Martin-Olmedo, P., Molina-Molina, J. M., et al. (2013). Adipose tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from southern spain. Environmental Research, 122, 31–37.PubMedGoogle Scholar
  8. Baldwin, S., Bristow, T., Ray, A., Rome, K., Sanderson, N., Sims, M., et al. (2016) Applicability of gas chromatography/quadrupole-orbitrap mass spectrometry in support of pharmaceutical research and development. Rapid Communications in Mass Spectrometry, 30(7), 873.PubMedGoogle Scholar
  9. Barrow, M. P., Peru, K. M., & Headley, J. V. (2014). An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the athabasca oil sands. Analytical Chemistry, 86, 8281–8288.PubMedGoogle Scholar
  10. Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical methods for the analysis of high-throughput metabolomics data. Computational and Structural Biotechnology Journal, 4, e201301009.PubMedPubMedCentralGoogle Scholar
  11. Beale, D., Jones, O., Karpe, A., Dayalan, S., Oh, D., Kouremenos, K., et al. (2017). A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. International Journal of Molecular Sciences, 18, 24.Google Scholar
  12. Beale, D. J., Crosswell, J., Karpe, A. V., Metcalfe, S. S., Morrison, P. D., Staley, C., et al. (2018a). Seasonal metabolic analysis of marine sediments collected from moreton bay in south east queensland, australia, using a multi-omics-based approach. Science of the Total Environment, 631–632, 1328–1341.PubMedGoogle Scholar
  13. Beale, D. J., Dunn, M. S., Morrison, P. D., Porter, N. A., & Marlow, D. R. (2012). Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corrosion Science, 55, 272–279.Google Scholar
  14. Beale, D., Jones, O., Karpe, A., Oh, D., White, I., Kouremenos, K., et al. (2018b). Breathomics and its application for disease diagnosis: A review of analytical techniques and approaches. In C. Raquel & C. Xavier (Eds.), Volatile organic compound analysis in biomedical diagnosis applications. Apple Academic Press.Google Scholar
  15. Beale, D. J., Karpe, A. V., & Ahmed, W. (2016). Beyond metabolomics: A review of multi-omics-based approaches. In D. J. Beale, K. A. Kouremenos & E. A. Palombo (Eds.), Microbial metabolomics: Applications in clinical, environmental, and industrial microbiology (pp. 289–312). Cham: Springer.Google Scholar
  16. Beale, D. J., Karpe, A. V., McLeod, J. D., Gondalia, S. V., Muster, T. H., Othman, M. Z., et al. (2016). An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Research, 88, 346–357.PubMedGoogle Scholar
  17. Beale, D. J., Marney, D., Marlow, D. R., Morrison, P. D., Dunn, M. S., Key, C., et al. (2013). Metabolomic analysis of cryptosporidium parvum oocysts in water: A proof of concept demonstration. Environmental Pollution, 174, 201–203.PubMedGoogle Scholar
  18. Beckner Whitener, M. E., Stanstrup, J., Panzeri, V., Carlin, S., Divol, B., Du Toit, M., et al. (2016). Untangling the wine metabolome by combining untargeted SPME–GCXGC-TOF-MS and sensory analysis to profile sauvignon blanc co-fermented with seven different yeasts. Metabolomics, 12, 53.Google Scholar
  19. Beleggia, R., Platani, C., Papa, R., Di Chio, A., Barros, E., Mashaba, C., et al. (2011). Metabolomics and food processing: From semolina to pasta. Journal of Agricultural and Food Chemistry, 59, 9366–9377.PubMedGoogle Scholar
  20. Belliardo, F., Bicchi, C., Cordero, C., Liberto, E., Rubiolo, P., & Sgorbini, B. (2006). Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants. Journal of Chromatographic Science, 44, 416–429.PubMedGoogle Scholar
  21. Bin, J., Yongmei, L., Chunming, X., Jingyi, Z., Miao, H., & Quan, S. (2014). Polycyclic aromatic hydrocarbons (PAHS) in ambient aerosols from beijing: Characterization of low volatile PAHS by positive-ion atmospheric pressure photoionization (APPI) coupled with fourier transform ion cyclotron resonance. Environmental Science & Technology, 48, 4716–4723.Google Scholar
  22. Brandt, S. D., Baumann, M. H., Partilla, J. S., Kavanagh, P. V., Power, J. D., Talbot, B., et al. (2014) Characterization of a novel and potentially lethal designer drug ([+ or -])-cis-para-methyl-4-methylaminorex (4,4′-dmar, or ‘serotoni’). Drug Testing and Analysis, 6(7–8), 684.PubMedPubMedCentralGoogle Scholar
  23. Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., et al. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14, 72.PubMedPubMedCentralGoogle Scholar
  24. Brown, M., Dunn, W. B., Ellis, D. I., Goodacre, R., Handl, J., Knowles, J. D., et al. (2005). A metabolome pipeline: From concept to data to knowledge. Metabolomics, 1, 39–51.Google Scholar
  25. Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.Google Scholar
  26. Cajka, T., Hajslova, J., Cochran, J., Holadova, K., & Klimankova, E. (2007). Solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of honey volatiles. Journal of Separation Science, 30, 534–546.PubMedGoogle Scholar
  27. Calingacion, M. N., Boualaphanh, C., Daygon, V. D., Anacleto, R., Hamilton, R. S., Biais, B., et al. (2012). A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics, 8, 771–783.Google Scholar
  28. Canelas, A. B., Ten Pierick, A., Ras, C., Seifar, R. M., Van Dam, J. C., Van Gulik, W. M., et al. (2009). Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Analytical Chemistry, 81, 7379–7389.PubMedGoogle Scholar
  29. Carrasco-Pancorbo, A., Nevedomskaya, E., Arthen-Engeland, T., Zey, T., Zurek, G., Baessmann, C., et al. (2009). Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: Analytical validation and applicability to metabolic profiling. Analytical Chemistry, 81, 10071–10079.PubMedGoogle Scholar
  30. Casal, S., & Oliveira, B. (2010). Fatty acids: GC analysis. In C. J (Ed.), Encyclopedia of chromatography (pp. 833–845). New york: Taylor & Francis.Google Scholar
  31. Casu, F., Pinu, F. R., Stefanello, E., Greenwood, D. R., & Villas-Boas, S. G. (2018). The fate of linoleic acid on saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics, 14, 12.Google Scholar
  32. Chalmers, R. A., & Lawson, A. M. (1982). Organic acids in man: Analytical chemistry, biochemistry and diagnosis of the organic acidurias. London: Chapman and Hall.Google Scholar
  33. Chen, W.-P., Yang, X.-Y., Hegeman, A. D., Gray, W. M., & Cohen, J. D. (2010). Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. Journal of Chromatography B, 878, 2199–2208.Google Scholar
  34. Chuang, C. K., Yeung, C. Y., Jim, W. T., Lin, S. P., Wang, T. J., Huang, S. F., & Liu, H. L. (2013). Comparison of free fatty acid content of human milk from taiwanese mothers and infant formula. Taiwanese Journal of Obstetrics and Gynecology, 52, 527–533.PubMedGoogle Scholar
  35. Colby, B. N. (1992). Spectral deconvolution for overlapping gc/ms components. Journal of the American Society for Mass Spectrometry, 3, 558–562.PubMedGoogle Scholar
  36. Cruz-Hernandez, C., Goeuriot, S., Giuffrida, F., Thakkar, S. K., & Destaillats, F. (2013). Direct quantification of fatty acids in human milk by gas chromatography. Journal of Chromatography A, 1284, 174–179.PubMedGoogle Scholar
  37. Cuperlovic-Culf, M., & Culf, A. S. (2016). Applied metabolomics in drug discovery. Expert Opinion on Drug Discovery, 11, 759–770.PubMedGoogle Scholar
  38. Daniel, R. M., Peterson, M. E., Danson, M. J., Price, N. C., Kelly, S. M., Monk, C. R., et al. (2010). The molecular basis of the effect of temperature on enzyme activity. The Biochemical Journal, 425, 353–360.Google Scholar
  39. Das, M. K., Bishwal, S. C., Das, A., Dabral, D., Varshney, A., Badireddy, V. K., & Nanda, R. (2014). Investigation of gender-specific exhaled breath volatome in humans by gcxgc-tof-ms. Analytical Chemistry, 86, 1229–1237.PubMedGoogle Scholar
  40. Datta, A., Kamthan, A., Kamthan, M., Chakraborty, N., Chakraborty, S., & Datta, A. (2012) A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS. Protocol Exchange.Google Scholar
  41. de Jonge, L. P., Douma, R. D., Heijnen, J. J., & van Gulik, W. M. (2012). Optimization of cold methanol quenching for quantitative metabolomics of penicillium chrysogenum. Metabolomics, 8, 727–735.PubMedGoogle Scholar
  42. de Souza, J. R. B., Dias, F. F. G., Caliman, J. D., Augusto, F., & Hantao, L. W. (2018). Opportunities for green microextractions in comprehensive two-dimensional gas chromatography/mass spectrometry-based metabolomics—a review. Analytica Chimica Acta, 1040, 1–18.Google Scholar
  43. Dekoning, W., & Vandam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123.Google Scholar
  44. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.PubMedPubMedCentralGoogle Scholar
  45. Dettmer, K., Stevens, A. P., Fagerer S. R., Kaspar, H., & Oefner, P. J. (2012) Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS. Totowa: Humana PressGoogle Scholar
  46. Dias, D. A., Jones, O. A. H., Beale, D. J., Boughton, B. A., Benheim, D., Kouremenos, K. A., et al. (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites, 6(4), 46.PubMedCentralGoogle Scholar
  47. Docherty, K. S., & Ziemann, P. J. (2001). On-line, inlet-based trimethylsilyl derivatization for gas chromatography of mono- and dicarboxylic acids. Journal of Chromatography A, 921, 265–275.PubMedGoogle Scholar
  48. Dołowy, M., & Pyka, A. (2015). Chromatographic methods in the separation of long-chain mono- and polyunsaturated fatty acids. Journal of Chemistry, 2015, 1–20.Google Scholar
  49. Dołowy, M., & Pyka-Pająk, A. (2014) Application of TLC, HPLC and GC methods to the study of amino acid and peptide enantiomers: A review. Biomedical Chromatography 28(1), 84–101.PubMedGoogle Scholar
  50. Duez, P., Kumps, A., & Mardens, Y. (1996). GC-MS profiling of urinary organic acids evaluated as a quantitative method. Clinical Chemistry, 42, 1609–1615.PubMedGoogle Scholar
  51. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.PubMedGoogle Scholar
  52. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060.PubMedGoogle Scholar
  53. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. TrAC Trends in Analytical Chemistry, 24, 285–294.Google Scholar
  54. Dunn, W. B., & Hankemeier, T. (2013). Mass spectrometry and metabolomics: Past, present and future. Metabolomics, 9, S1–S3.Google Scholar
  55. Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and qc samples in large-scale and ms-driven untargeted metabolomic studies of humans. Bioanalysis, 4, 2249–2264.PubMedGoogle Scholar
  56. Duportet, X., Aggio, R. B. M., Carneiro, S., & Villas-Boas, S. G. (2012). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8, 410–421.Google Scholar
  57. Ecker, J., Scherer, M., Schmitz, G., & Liebisch, G. (2012). A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. Journal of Chromatography B, 897, 98–104.Google Scholar
  58. Eldjarn, L., Jellum, E., Stokke, O., Pande, H., & Waaler, P. E. (1970). B-hydroxyisovaleric aciduria and b-methylcrotonylglycinuria: A new inborn error of metabolism. Lancet, 2, 521–522.PubMedGoogle Scholar
  59. Elie, M. P., Baron, M. G., & Birkett, J. W. (2012). Injection port silylation of gamma-hydroxybutyrate and trans-hydroxycrotonic acid: Conditions optimisation and characterisation of the di-tert-butyldimethylsilyl derivatives by GC-MS. Analyst, 137, 255–262.PubMedGoogle Scholar
  60. Ewald, J. C., Heux, S., & Zamboni, N. (2009). High-throughput quantitative metabolomics: Workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Analytical Chemistry, 81, 3623–3629.PubMedGoogle Scholar
  61. Faijes, M., Mars, A. E., & Smid, E. J. (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories 6(1), 27PubMedPubMedCentralGoogle Scholar
  62. Fancy, S.-A., & Rumpel, K. (2008). GC-MS-based metabolomics. In F. Wang (Ed.), Biomarker methods in drug discovery and development (pp. 317–340). Totowa: Humana Press.Google Scholar
  63. Farajzadeh, M. A., Nouri, N., & Khorram, P. (2014). Derivatization and microextraction methods for determination of organic compounds by gas chromatography. TrAC Trends in Analytical Chemistry, 55, 14–23.Google Scholar
  64. Fearnley, L. G., & Inouye, M. (2016). Metabolomics in epidemiology: From metabolite concentrations to integrative reaction networks. International Journal of Epidemiology, 45, 1319–1328.PubMedPubMedCentralGoogle Scholar
  65. Ferreira, A. M., Laespada, M. E., Pavon, J. L., & Cordero, B. M. (2013). In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. Journal of Chromatography A, 1296, 70–83.PubMedGoogle Scholar
  66. Fiehn, O. (2003). Metabolic networks of Cucurbita maxima phloem. Phytochemistry, 62, 875–886.PubMedGoogle Scholar
  67. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.PubMedGoogle Scholar
  68. Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. E., Beecher, C. W., et al. (2010). Metscape: A cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26, 971–973.PubMedPubMedCentralGoogle Scholar
  69. Garcia, A., & Barbas, C. (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods in Molecular Biology 708, 191–204.PubMedGoogle Scholar
  70. Gardinassi, L. G., Xia, J., Safo, S. E., & Li, S. (2017). Bioinformatics tools for the interpretation of metabolomics data. Current Pharmacology Reports, 3, 374–383.Google Scholar
  71. Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2018). Metabolomics: An analytical perspective. In Reference module in chemistry, molecular sciences and chemical engineering. Elsevier.
  72. Goetz, N., Burgaud, H., & Berrebi, C. (1984). Analysis of the lipid content of single hair bulbs. Comparison with the content of the sebaceous gland and with surface lipids. J Soc Cosmet Chem, 35, 411–422.Google Scholar
  73. Gonzalez, B., François, J., & Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13, 1347–1356.PubMedGoogle Scholar
  74. Gordon, M. H. (1990). Principles of gas chromatography. In M. H. Gordon (Ed.), Principles and applications of gas chromatography in food analysis (pp. 11–58). Boston: Springer.Google Scholar
  75. Gowda, G. A. N., & Djukovic, D. (2014). Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Methods in Molecular Biology (Clifton, N.J.), 1198, 3–12.Google Scholar
  76. Granucci, N., Pinu, F. R., Han, T. L., & Villas-Boas, S. G. (2015). Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? Molecular BioSystems, 11, 3297–3304.PubMedGoogle Scholar
  77. Gu, Q., David, F., Lynen, F., Rumpel, K., Dugardeyn, J., Van Der Straeten, D., et al. (2011). Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of arabidopsis species. Journal of Chromatography A, 1218, 3247–3254.PubMedGoogle Scholar
  78. Guijas, C., Montenegro-Burke, J. R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., et al. (2018). Metlin: A technology platform for identifying knowns and unknowns. Analytical Chemistry, 90, 3156–3164.PubMedPubMedCentralGoogle Scholar
  79. Gyawali, P., Beale, D. J., Ahmed, W., Karpe, A. V., Magalhaes, R. J. S., Morrison, P. D., et al. (2016). Determination of ancylostoma caninum ova viability using metabolic profiling. Parasitology Research, 115, 3485–3492.PubMedGoogle Scholar
  80. Hajjaj, H., Blanc, P. J., Goma, G., & François, J. (1998). Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extra-cellular metabolites in filamentous fungi. FEMS Microbiology Letters, 164, 195–200.Google Scholar
  81. Halket, J. M., Waterman, D., Przyborowska, A. M., Patel, R. K., Fraser, P. D., & Bramley, P. M. (2005). Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 56, 219–243.PubMedGoogle Scholar
  82. Han, L. D., Xia, J. F., Liang, Q. L., Wang, Y., Wang, Y. M., Hu, P., et al. (2011). Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Analytica Chimica Acta, 689, 85–91.PubMedGoogle Scholar
  83. Heinz, V., Alvarez, I., Angersbach, A., & Knorr, D. (2001). Preservation of liquid foods by high intensity pulsed electric fields—Basic concepts for process design. Trends in Food Science & Technology, 12, 103–111.Google Scholar
  84. Helin, A., Rönkkö, T., Parshintsev, J., Hartonen, K., Schilling, B., Läubli, T., et al. (2015). Solid phase microextraction arrow for the sampling of volatile amines in wastewater and atmosphere. Journal of Chromatography A, 1426, 56–63.PubMedGoogle Scholar
  85. Hernández Bort, J. A., Shanmukam, V., Pabst, M., Windwarder, M., Neumann, L., Alchalabi, A., et al. (2014). Reduced quenching and extraction time for mammalian cells using filtration and syringe extraction. Journal of Biotechnology, 182–183, 97–103.PubMedPubMedCentralGoogle Scholar
  86. Hiller, J., Franco-Lara, E., & Weuster-Botz, D. (2007). Metabolic profiling of escherichia coli cultivations: Evaluation of extraction and metabolite analysis procedures. Biotechnology Letters, 29, 1169–1178.PubMedGoogle Scholar
  87. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., et al. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 10205–10210.PubMedPubMedCentralGoogle Scholar
  88. Hoffmann, G., Aramaki, S., Blum-Hoffmann, E., Nyhan, W. L., & Sweetman, L. (1989). Quantitative analysis for organic acids in biological samples: Batch isolation followed by gas chromatographic-mass spectrometric analysis. Clinical Chemistry, 35, 587–595.PubMedGoogle Scholar
  89. Hong, J., Yang, L., Zhang, D., & Shi, J. (2016). Plant metabolomics: An indispensable system biology tool for plant science. International Journal of Molecular Sciences, 17, 767.PubMedCentralGoogle Scholar
  90. Hope, J. L., Prazen B. J., Nilsson, E. J., Lidstrom, M. E., & Synovec, R. E. (2005) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: Analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65(2), 380–388PubMedGoogle Scholar
  91. Huba, A. K., & Gardinali, P. R. (2016). Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Science of the Total Environment, 563, 600–610.PubMedGoogle Scholar
  92. Hummel, J., Strehmel, N., Selbig, J., Walther, D., & Kopka, J. (2010). Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 6, 322–333.PubMedPubMedCentralGoogle Scholar
  93. Hyotylainen, T. (2013) Sample collection, storage and preparation. In T. Hyotylainen & S. Wiedmer (Eds), Chromatographic methods in metabolomics. Cambridge: RSC Cambridge.Google Scholar
  94. Ibáñez, C., García-Cañas, V., Valdés, A., & Simó, C. (2013). Novel ms-based approaches and applications in food metabolomics. TrAC Trends in Analytical Chemistry, 52, 100–111.Google Scholar
  95. Irwin, C., Mienie, L. J., Wevers, R. A., Mason, S., Westerhuis, J. A., van Reenen, M., et al. (2018). GC–MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Scientific Reports, 8, 5775.PubMedPubMedCentralGoogle Scholar
  96. Jaeger, C., Hoffmann, F., Schmitt, C. A., & Lisec, J. (2016). Automated annotation and evaluation of in-source mass spectra in GC/atmospheric pressure chemical ionization-MS-based metabolomics. Analytical Chemistry, 88, 9386–9390.PubMedGoogle Scholar
  97. Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ace inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121, 178–184.Google Scholar
  98. Jäpelt, K. B., Christensen, J. H., & Villas-Bôas, S. G. (2015) Metabolic fingerprinting of Lactobacillus paracasei: The optimal quenching strategy. Microbial Cell Factories 14(1), 132PubMedPubMedCentralGoogle Scholar
  99. Jellum, E., Kluge, T., Borresen, H. C., Stokke, O., & Eldjarn, L. (1970). Pyroglutamic aciduria—A new inborn error of metabolism. Scandinavian Journal of Clinical and Laboratory Investigation, 26, 327–335.PubMedGoogle Scholar
  100. Jiménez-Martín, E., Ruiz, J., Pérez-Palacios, T., Silva, A., & Antequera, T. (2012). Gas chromatography–mass spectrometry method for the determination of free amino acids as their dimethyl-tert-butylsilyl (tbdms) derivatives in animal source food. Journal of Agricultural and Food Chemistry, 60, 2456–2463.PubMedGoogle Scholar
  101. Jones, O. A. H., Maguire, M. L., Griffin, J. L., Jung, Y.-H., Shibato, J., Rakwal, R., et al. (2011). Using metabolic profiling to assess plant-pathogen interactions: An example using rice (oryza sativa) and the blast pathogen Magnaporthe grisea. European Journal of Plant Pathology, 129, 539–554.Google Scholar
  102. Jurczyszyn, A., Czepiel, J., Gdula-Argasinska, J., Czapkiewicz, A., Biesiada, G., Drozdz, M., et al. (2014). Erythrocyte membrane fatty acids in multiple myeloma patients. Leukemia Research, 38, 1260–1265.PubMedGoogle Scholar
  103. Kanani, H. H., & Klapa, M. I. (2007). Data correction strategy for metabolomics analysis using gas chromatography–mass spectrometry. Metabolic Engineering, 9, 39–51.PubMedGoogle Scholar
  104. Karnovsky, A., Weymouth, T., Hull, T., Tarcea, V. G., Scardoni, G., Laudanna, C., et al. (2012). Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics, 28, 373–380.PubMedGoogle Scholar
  105. Karpe, A. V., Beale, D. J., Godhani, N. B., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2015). Untargeted metabolic profiling of winery-derived biomass waste degradation by penicillium chrysogenum. Journal of Agricultural and Food Chemistry, 63, 10696–10704.PubMedGoogle Scholar
  106. Karpe, A. V., Beale, D. J., Godhani, N. B., Morrison, P. D., Harding, I. H., & Palombo, E. A. (2016). Untargeted metabolic profiling of winery-derived biomass waste degradation by aspergillus niger. Journal of Chemical Technology and Biotechnology, 91, 1505–1516.Google Scholar
  107. Karpe, A. V., Beale, D. J., Harding, I. H., & Palombo, E. A. (2015). Optimization of degradation of winery-derived biomass waste by ascomycetes. Journal of Chemical Technology & Biotechnology, 90, 1793–1801.Google Scholar
  108. Kaspar, H., Dettmer, K., Gronwald, W., & Oefner, P. J. (2008). Automated gc–ms analysis of free amino acids in biological fluids. Journal of Chromatography B, 870, 222–232.Google Scholar
  109. Kersten, H., Kroll, K., Haberer, K., Brockmann, K., Benter, T., Peterson, A., & Makarov, A. (2016). Design study of an atmospheric pressure photoionization interface for GC-MS. Journal of the American Society for Mass Spectrometry, 27, 607–614.PubMedGoogle Scholar
  110. Khakimov, B., Jespersen, B., & Engelsen, S. (2014). Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography-mass spectrometry and advanced chemometrics. Foods, 3, 569.PubMedPubMedCentralGoogle Scholar
  111. Khakimov, B., Motawia, M. S., Bak, S., & Engelsen, S. B. (2013). The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Analytical and Bioanalytical Chemistry, 405, 9193–9205.PubMedGoogle Scholar
  112. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.PubMedPubMedCentralGoogle Scholar
  113. Kind, T., Wohlgemuth, G., Lee do, Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 15, 10038–10048.Google Scholar
  114. Kloehn, J., Saunders, E. C., O’Callaghan, S., Dagley, M. J., & McConville, M. J. (2015). Characterization of metabolically quiescent leishmania parasites in murine lesions using heavy water labeling. PLoS Pathogens, 11, e1004683.PubMedPubMedCentralGoogle Scholar
  115. Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7, 307–328.PubMedGoogle Scholar
  116. Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.PubMedGoogle Scholar
  117. Kopf, T., & Schmitz, G. (2013). Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. Journal of Chromatography B, 938, 22–26.Google Scholar
  118. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21, 1635–1638.PubMedGoogle Scholar
  119. Kouremenos, K. A., Harynuk, J., Winniford, W. L., Morrison, P., & Marriott, P. J. (2010). One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography. Journal of Chromatography B, 878, 1761–1770.Google Scholar
  120. Kouremenos, K. A., Jones, O. A. H., Morrison, P. D., & Marriott, P. J. (2016). Development of an online LC-LVI-GC × GC system: Design and preliminary applications. Chromatographia, 79, 79–87.Google Scholar
  121. Kouremenos, K. A., Pitt, J., & Marriott, P. J. (2010). Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: Application to the diagnosis of organic acidurias and biomarker discovery. Journal of Chromatography A, 1217, 104–111.PubMedGoogle Scholar
  122. Kremser, A., Jochmann, M. A., & Schmidt, T. C. (2016). Pal spme arrow—Evaluation of a novel solid-phase microextraction device for freely dissolved pahs in water. Analytical and Bioanalytical Chemistry, 408, 943–952.PubMedGoogle Scholar
  123. Krumpochova, P., Bruyneel, B., Molenaar, D., Koukou, A., Wuhrer, M., Niessen, W. M. A., et al. (2015). Amino acid analysis using chromatography–mass spectrometry: An inter platform comparison study. Journal of Pharmaceutical and Biomedical Analysis, 114, 398–407.PubMedGoogle Scholar
  124. Kuhara, T. (2001). Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography–mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 758, 3–25.PubMedGoogle Scholar
  125. Kuich, P. H., Hoffmann, N., & Kempa, S. (2014). Maui-via: A user-friendly software for visual identification, alignment, correction, and quantification of gas chromatography-mass spectrometry data. Frontiers in Bioengineering and Biotechnology, 2, 84.PubMedGoogle Scholar
  126. Kumarasingha, R., Karpe, A. V., Preston, S., Yeo, T. C., Lim, D. S. L., Tu, C. L., et al. (2016). Metabolic profiling and in vitro assessment of anthelmintic fractions of picria fel-terrae lour. International Journal for Parasitology: Drugs and Drug Resistance, 6, 171–178.PubMedGoogle Scholar
  127. Kvitvang, H. F. N., Andreassen, T., Adam, T., Villas-Bôas, S. G., & Bruheim, P. (2011). Highly sensitive GC/MS/MS method for quantitation of amino and nonamino organic acids. Analytical Chemistry, 83, 2705–2711.PubMedGoogle Scholar
  128. Lai, Z., & Fiehn, O. (2018). Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrometry Reviews, 37, 245–257.PubMedGoogle Scholar
  129. Lankadurai, B. P., Nagato, E. G., & Simpson, M. J. (2013). Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environmental Reviews, 21, 180–205.Google Scholar
  130. Lei, Z., Huhman, D., & Sumner, L. W. (2011) Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry. Scholar
  131. Li, X., Xu, Z., Lu, X., Yang, X., Yin, P., Kong, H., et al. (2009). Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Analytica Chimica Acta, 633, 257–262.PubMedGoogle Scholar
  132. Lisec, J., Hoffmann, F., Schmitt, C., & Jaeger, C. (2016). Extending the dynamic range in metabolomics experiments by automatic correction of peaks exceeding the detection limit. Analytical Chemistry, 88, 7487–7492.PubMedGoogle Scholar
  133. Little, J. L. (1999). Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. Journal of Chromatography A, 844, 1–22.PubMedGoogle Scholar
  134. Lubes, G., & Goodarzi, M. (2017). Analysis of volatile compounds by advanced analytical techniques and multivariate chemometrics. Chemical Reviews, 117, 6399–6422.PubMedGoogle Scholar
  135. Lubes, G., & Goodarzi, M. (2018). GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. Journal of Pharmaceutical and Biomedical Analysis, 147, 313–322.PubMedGoogle Scholar
  136. Luosujarvi, L., Karikko, M. M., Haapala, M., Saarela, V., Huhtala, S., Franssila, S., et al. (2008). Gas chromatography/mass spectrometry of polychlorinated biphenyls using atmospheric pressure chemical ionization and atmospheric pressure photoionization microchips. Rapid Communication in Mass Spectrometry, 22, 425–431.Google Scholar
  137. Ma, Y., Kind, T., Vaniya, A., Gennity, I., Fahrmann, J. F., & Fiehn, O. (2015). An in silico MS/MS library for automatic annotation of novel FAHFA lipids. Journal of Cheminformatics, 7, 53.PubMedPubMedCentralGoogle Scholar
  138. Mamer, O., Gravel, S.-P., Choinière, L., Chénard, V., St-Pierre, J., & Avizonis, D. (2013). The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS. Metabolomics, 9, 1019–1030.PubMedPubMedCentralGoogle Scholar
  139. Marriott, P., & Shellie, R. (2002). Principles and applications of comprehensive two-dimensional gas chromatography. TrAC Trends in Analytical Chemistry, 21, 573–583.Google Scholar
  140. Marsol-Vall, A., Balcells, M., Eras, J., & Canela-Garayoa, R. (2016). Injection-port derivatization coupled to GC-MS/ms for the analysis of glycosylated and non-glycosylated polyphenols in fruit samples. Food Chemistry, 204, 210–217.PubMedGoogle Scholar
  141. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., et al. (2011). mzML—A community standard for mass spectrometry data. Molecular & Cell Proteomics, 10, R110.000133.Google Scholar
  142. Masic, U., & Yeomans, M. R. (2014). Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition, 100, 532–538.PubMedGoogle Scholar
  143. Mastrangelo, A., Ferrarini, A., Rey-Stolle, F., García, A., & Barbas, C. (2015). From sample treatment to biomarker discovery: A tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Analytica Chimica Acta, 900, 21–35.PubMedGoogle Scholar
  144. Matysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255.Google Scholar
  145. McEwen, C. N. (2007). GC/MS on an LC/MS instrument using atmospheric pressure photoionization. International Journal of Mass Spectrometry, 259, 57–64.Google Scholar
  146. Mieth, M., Schubert, J. K., Groger, T., Sabel, B., Kischkel, S., Fuchs, P., Hein, D., Zimmermann, R., & Miekisch, W. (2010). Automated needle trap heart-cut gc/ms and needle trap comprehensive two-dimensional gc/tof-ms for breath gas analysis in the clinical environment. Analytical Chemistry, 82, 2541–2551.PubMedGoogle Scholar
  147. Mitrevski, B. S., Kouremenos, K. A., & Marriott, P. J. (2009). Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography. Bioanalysis, 1, 367–391.PubMedGoogle Scholar
  148. Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., & Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26, 855–866.Google Scholar
  149. Molnár-Perl, I., & Katona, Z. F. (2000). GC-MS of amino acids as theirtrimethylsilyl/t-butyldimethylsilyl derivatives: In model solutions iii. Chromatographia, 51, S228–S236.Google Scholar
  150. Mondello, L., Tranchida, P. Q., Dugo, P., & Dugo, G. (2008). Comprehensive two-dimensional gas chromatography-mass spectrometry: A review. Mass Spectrometry Reviews, 27, 101–124.PubMedGoogle Scholar
  151. Moros, G., Chatziioannou, A. C., Gika, H. G., Raikos, N., & Theodoridis, G. (2017). Investigation of the derivatization conditions for gc–ms metabolomics of biological samples. Bioanalysis, 9, 53–65.PubMedGoogle Scholar
  152. Mozzi, F., Ortiz, M. E., Bleckwedel, J., De Vuyst, L., & Pescuma, M. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International, 54, 1152–1161.Google Scholar
  153. Muguruma, Y., Tsutsui, H., Noda, T., Akatsu, H., & Inoue, K. (2018). Widely targeted metabolomics of alzheimer’s disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B, 1091, 53–66.Google Scholar
  154. Nácher-Mestre, J., Serrano, R., Portalés, T., Berntssen, M. H. G., Pérez-Sánchez, J., & Hernández, F. (2014). Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization. Journal of Agricultural & Food Chemistry, 62, 2165.Google Scholar
  155. Nakagawa, T., Kohori, J., Koike, S., Katsuragi, Y., & Shoji, T. (2014). Sodium aspartate as a specific enhancer of salty taste perception–sodium aspartate is a possible candidate to decrease excessive intake of dietary salt. Chemical Senses, 39, 781–786.PubMedGoogle Scholar
  156. Nishi, S. K., Kendall, C. W., Bazinet, R. P., Bashyam, B., Ireland, C. A., Augustin, L. S., et al. (2014). Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 24, 845–852.PubMedGoogle Scholar
  157. Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135–1137.PubMedPubMedCentralGoogle Scholar
  158. Norgaard, A. W., Kofoed-Sorensen, V., Svensmark, B., Wolkoff, P., & Clausen, P. A. (2013). Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization. Analytical Chemistry, 85, 28–32.PubMedGoogle Scholar
  159. O’Callaghan, S., De Souza, D. P., Isaac, A., Wang, Q., Hodkinson, L., Olshansky, M., et al. (2012). Pyms: A python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics, 13, 115.PubMedPubMedCentralGoogle Scholar
  160. Orata, F. (2012) Derivatization reactions and reagents for gas chromatography analysis, advanced gas chromatography. In M. A. Mohd (Ed.), Progress in agricultural, biomedical and industrial applications. Croatia: IntechGoogle Scholar
  161. Otter, D. (2012). Standardised methods for amino acid analysis of food. British Journal of Nutrition, 108, S230–S237.PubMedGoogle Scholar
  162. Pacchiarotta, T., Nevedomskaya, E., Carrasco-Pancorbo, A., Deelder, A. M., & Mayboroda, O. A. (2010). Evaluation of GC-APCI/MS and GC-FID as a complementary platform. Journal of Biomolecular Techniques: JBT, 21, 205–213.PubMedGoogle Scholar
  163. Pandohee, J., & Jones, O. A. H. (2016). Evaluation of new micro solid-phase extraction cartridges for on-column derivatisation reactions. Analytical Methods, 8, 1765–1769.Google Scholar
  164. Pandohee, J., Stevenson, P., Zhou, X. R., Spencer, M. J. S., & Jones, O. A. H. (2015). Multi-dimensional liquid chromatography and metabolomics, are two dimensions better than one? Current Metabolomics, 3, 10–20.Google Scholar
  165. Park, C., Yun, S., Lee, S. Y., Park, K., & Lee, J. (2012). Metabolic profiling of Klebsiella oxytoca: Evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS. Applied Biochemistry and Biotechnology, 167, 425–438.PubMedGoogle Scholar
  166. Patnaik, P., Barshatzky, K., & Levine, A. M. (2008). Esterification of acid herbicides into butyl derivatives: Alternative pathways for their trace analysis. American Laboratory, 40, 18–19.Google Scholar
  167. Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of United States of America 68, 2374–2376.Google Scholar
  168. Peterson, A. C., Balloon, A. J., Westphall, M. S., & Coon, J. J. (2014). Development of a gc/quadrupole-orbitrap mass spectrometer, part ii: New approaches for discovery metabolomics. Analytical Chemistry, 86, 10044–10051.PubMedPubMedCentralGoogle Scholar
  169. Phillips, M., Cataneo, R. N., Chaturvedi, A., Kaplan, P. D., Libardoni, M., Mundada, M., Patel, U., & Zhang, X. (2013). Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS ONE, 8, e75274.PubMedPubMedCentralGoogle Scholar
  170. Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C., & Villas-Boas, S. G. (2014). Sauvignon blanc metabolomics: Grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics, 10, 556–573.Google Scholar
  171. Pinu, F. R., & Villas-Boas, S. G. (2017a) Rapid quantification of major volatile metabolites in fermented food and beverages using gas chromatography-mass spectrometry. Metabolites 7(3), 37PubMedCentralGoogle Scholar
  172. Pinu, F. R., & Villas-Boas, S. G. (2017b). Extracellular microbial metabolomics: The state of the art. Metabolites, 7(3), 43. Scholar
  173. Pinu, F. R., Villas-Boas, S. G., & Aggio, R. (2017) Analysis of intracellular metabolites from microorganisms: Quenching and extraction protocols. Metabolites 7(4), 53PubMedCentralGoogle Scholar
  174. Piri-Moghadam, H., Alam, M. N., & Pawliszyn, J. (2017). Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Analytica Chimica Acta, 984, 42–65.PubMedGoogle Scholar
  175. Pitt, J. J., Peters, H., Boneh, A., Yaplito-Lee, J., Wieser, S., Hinderhofer, K., Johnson, D., & Zschocke, J. (2015). Mitochondrial 3-hydroxy-3-methylglutaryl-coa synthase deficiency: Urinary organic acid profiles and expanded spectrum of mutations. Journal of Inherited Metabolic Disease, 38, 459–466.PubMedGoogle Scholar
  176. Pon, A., Jewison, T., Su, Y., Liang, Y., Knox, C., Maciejewski, A., Wilson, M., & Wishart, D. S. (2015). Pathways with pathwhiz. Nucleic Acids Research, 43, W552–W559.PubMedPubMedCentralGoogle Scholar
  177. Poojary, M. M., & Passamonti, P. (2016). Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization. Journal of Chromatography A, 1476, 88–104.PubMedGoogle Scholar
  178. Portolés, T., Mol, J. G. J., Sancho, J. V., López, F. J., & Hernández, F. (2014). Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization. Analytica Chimica Acta, 838, 76–85.PubMedGoogle Scholar
  179. Postigo, C., Cojocariu, C., Richardson, S., Silcock, P., & Barcelo, D. (2016). Characterization of iodinated disinfection by-products in chlorinated and chloraminated waters using orbitrap based gas chromatography-mass spectrometry. Analytical & Bioanalytical Chemistry, 408, 3401–3411.Google Scholar
  180. Prasad Maharjan, R., & Ferenci, T. (2003). Global metabolite analysis: The influence of extraction methodology on metabolome profiles of escherichia coli. Analytical Biochemistry, 313, 145–154.Google Scholar
  181. Primec, M., Mičetić-Turk, D., & Langerholc, T. (2017). Analysis of short-chain fatty acids in human feces: A scoping review. Analytical Biochemistry, 526, 9–21.PubMedGoogle Scholar
  182. Qiu, Y., Moir, R., Willis, I., Beecher, C., Tsai, Y. H., Garrett, T. J., Yost, R. A., & Kurland, I. J. (2016). Isotopic ratio outlier analysis of the s. Cerevisiae metabolome using accurate mass gas chromatography/time-of-flight mass spectrometry: A new method for discovery. Analytical Chemistry, 88, 2747–2754.PubMedPubMedCentralGoogle Scholar
  183. Qualley, A. V., & Dudareva, N. (2014). Quantification of plant volatiles. Methods in Molecular Biology, 1083, 41–53.PubMedGoogle Scholar
  184. Quehenberger, O., Armando, A. M., & Dennis, E. A. (2011). High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochimica et Biophysica Acta, 1811, 648–656.PubMedPubMedCentralGoogle Scholar
  185. Ranz, A., Eberl, A., Maier, E., & Lankmayr, E. (2008). Microwave-assisted derivatization of acidic herbicides for gas chromatography-mass spectrometry. Journal of Chromatography A, 1192, 282–288.PubMedGoogle Scholar
  186. Raterink, R.-J., Lindenburg, P. W., Vreeken, R. J., Ramautar, R., & Hankemeier, T. (2014). Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC Trends in Analytical Chemistry, 61, 157–167.Google Scholar
  187. Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D., & Lu, L. J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics, 11, 1492–1513.Google Scholar
  188. Robinson, A. M., Gondalia, S. V., Karpe, A. V., Eri, R., Beale, D. J., Morrison, P. D., et al. (2016). Fecal microbiota and metabolome in a mouse model of spontaneous chronic colitis: Relevance to human inflammatory bowel disease. Inflammatory Bowel Diseases, 22, 2767–2787.PubMedGoogle Scholar
  189. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klapperstück, M., Czauderna, T., Klukas, C., & Schreiber, F. (2012). Vanted v2: A framework for systems biology applications. BMC Systems Biology, 6, 139.PubMedPubMedCentralGoogle Scholar
  190. Rowan, D. D. (2011). Volatile metabolites. Metabolites, 1, 41–63.PubMedPubMedCentralGoogle Scholar
  191. Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L., & Martínez-Castro, I. (2011). Derivatization of carbohydrates for GC and GC–MS analyses. Journal of Chromatography B, 879, 1226–1240.Google Scholar
  192. Ruttkies, C., Strehmel, N., Scheel, D., & Neumann, S. (2015). Annotation of metabolites from gas chromatography/atmospheric pressure chemical ionization tandem mass spectrometry data using an in silico generated compound database and MetFrag. Rapid Communications in Mass Spectrometry, 29, 1521–1529.PubMedGoogle Scholar
  193. Sales, C., Cervera, M. I., Gil, R., Portolés, T., Pitarch, E., & Beltran, J. (2017). Quality classification of spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chemistry, 216, 365–373.PubMedGoogle Scholar
  194. Saradhi, U. V., Prabhakar, S., Reddy, T. J., & Murty, M. R. (2007). Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation. Journal of Chromatography A, 1157, 391–398.Google Scholar
  195. Scalbert, A., Brennan, L., Manach, C., Andres-Lacueva, C., Dragsted, L. O., Draper, J., et al. (2014). The food metabolome: A window over dietary exposure. American Journal of Clinical Nutrition, 99, 1286–1308.PubMedGoogle Scholar
  196. Schummer, C., Delhomme, O., Appenzeller, B. M., Wennig, R., & Millet, M. (2009). Comparison of mtbstfa and bstfa in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta, 77, 1473–1482.PubMedGoogle Scholar
  197. Schwemer, T., Rüger, C. P., Sklorz, M., & Zimmermann, R. (2015). Gas chromatography coupled to atmospheric pressure chemical ionization FT-ICR mass spectrometry for improvement of data reliability. Analytical Chemistry, 87, 11957–11961. R.PubMedGoogle Scholar
  198. Sertoglu, E., Kurt, I., Tapan, S., Uyanik, M., Serdar, M. A., Kayadibi, H., & El-Fawaeir, S. (2014). Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem Phys Lipids, 178, 11–17.PubMedGoogle Scholar
  199. Shellie, R., & Marriott, P. (2003). Comprehensive two-dimensional gas chromatography -mass spectrometry analysis of pelargonium graveolens essential oil using rapid scanning quadrupole mass spectrometry. Analyst (Cambridge, UK), 128, 879–883.Google Scholar
  200. Shellie, R., Mondello, L., Marriott, P., & Dugo, G. (2002). Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 970, 225–234.PubMedGoogle Scholar
  201. Shoemaker, J. D., & Elliott, W. H. (1991). Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. Journal of Chromatography B: Biomedical Sciences and Applications, 562, 125–138.Google Scholar
  202. Silva, F. O. (2006). Microwave-assisted derivatization of glucose and galactose for gas chromatographic determination in human plasma. Clinical Chemistry, 52, 334–335.PubMedGoogle Scholar
  203. Simó, C., Ibáñez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15, 18941–18966.PubMedPubMedCentralGoogle Scholar
  204. Skogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound binbase mass spectral database. BMC Bioinformatics, 12, 321–321.PubMedPubMedCentralGoogle Scholar
  205. Smart, K. F., Aggio, R. B., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.PubMedGoogle Scholar
  206. Söderholm, S. L., Damm, M., & Kappe, C. O. (2010). Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Molecular Diversity, 14, 869–888.PubMedGoogle Scholar
  207. Soria, A. C., García-Sarrió, M. J., Ruiz-Matute, A. I., & Sanz, M. L. (2017) Chapter nine—Headspace techniques for volatile sampling. In E. Ibáñez & A. Cifuentes (Eds), Comprehensive analytical chemistry (pp. 255–278). Amsterdam: Elsevier.Google Scholar
  208. Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics, 13, 106.PubMedPubMedCentralGoogle Scholar
  209. Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC–MS metabolite profiling. Journal of Chromatography B, 871, 182–190.Google Scholar
  210. Stringer, K. A., McKay, R. T., Karnovsky, A., Quémerais, B., & Lacy, P. (2016). Metabolomics and its application to acute lung diseases. Frontiers in Immunology, 7, 44–44.PubMedPubMedCentralGoogle Scholar
  211. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.PubMedPubMedCentralGoogle Scholar
  212. Takahashi, T., & Yoshida, S. (2014). Distribution of glycolipid and unsaturated fatty acids in human hair. Lipids, 49, 905–917.PubMedGoogle Scholar
  213. Talrose, V. L., & Lyubimova, A. K. (1952). Doklady Akademii Nauk SSSR, 86, 909.Google Scholar
  214. Tanaka, K., Hine, D. G., West-Dull, A., & Lynn, T. B. (1980). Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clinical Chemistry, 26, 1839–1846.PubMedGoogle Scholar
  215. Tiuca, I., Nagy, K., & Oprean, R. (2015). Recent developments in fatty acids profile determination in biological samples—a review. Revista Romana de Medicina de Laborator, 23(4), 371–384.Google Scholar
  216. Toepfl, S., Heinz, V., & Knorr, D. (2005) Overview of pulsed electric field processing of foods. In Sun, D.-W. (Ed), Emerging technologies for food processing (pp. 69–97). London: Academic Press.Google Scholar
  217. Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., Fukusaki, E., Fiehn, O., et al. (2011). GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (simca). BMC Bioinformatics, 12, 131–131.PubMedPubMedCentralGoogle Scholar
  218. Tulipani, S., Llorach, R., Urpi-Sarda, M., & Andres-Lacueva, C. (2013). Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: When less is more. Analytical Chemistry, 85, 341–348.PubMedGoogle Scholar
  219. Turner, M. A., Guallar-Hoyas, C., Kent, A. L., Wilson, I. D., & Thomas, C. L. (2011). Comparison of metabolomic profiles obtained using chemical ionization and electron ionization MS in exhaled breath. Bioanalysis, 3, 2731–2738.PubMedGoogle Scholar
  220. Vemuri, R., Shinde, T., Gundamaraju, R., Gondalia, S. V., Karpe, A. V., Beale, D. J., et al. (2018). Lactobacillus acidophilus dds-1 modulates the gut microbiota and improves metabolic profiles in aging mice. Nutrients, 10(9), 1255. Scholar
  221. Villas-Bôas, S. G., Delicado, D. G., Åkesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138.PubMedGoogle Scholar
  222. Villas-Bôas, S. G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast, 22, 1155–1169.PubMedGoogle Scholar
  223. Villas-Bôas, S. G., Højer-Pedersen, J., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005). Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast, 22, 1155–1169.PubMedGoogle Scholar
  224. Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.PubMedGoogle Scholar
  225. Villas-Bôas, S. G., Moxley, J. F., Åkesson, M., Stephanopoulos, G., & Nielsen, J. (2005). High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts. Biochemical Journal, 388, 669–677.PubMedPubMedCentralGoogle Scholar
  226. Villas-Bôas, S. G., Roeseener, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolomics analysis: An introduction. Hoboken: Wiley.Google Scholar
  227. Villas-Bôas, S. G., Smart, K. F., Sivakumaran, S., & Lane, G. A. (2011) Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1, 3–20.PubMedPubMedCentralGoogle Scholar
  228. Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends in Analytical Chemistry, 78, 23–35.Google Scholar
  229. Visentin, M., & Pietrogrande, M. C. (2014) Determination of polar organic compounds in atmospheric aerosols by gas chromatography with ion trap tandem mass spectrometry. Journal of Separation Science, 37(13), 1561.PubMedGoogle Scholar
  230. Wachsmuth, C., Hahn, T., Oefner, P., & Dettmer, K. (2015). Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Analytical & Bioanalytical Chemistry, 407, 6669–6680.Google Scholar
  231. Wachsmuth, C. J., Dettmer, K., Lang, S. A., Mycielska, M. E., & Oefner, P. J. (2014). Continuous water infusion enhances atmospheric pressure chemical ionization of methyl chloroformate derivatives in gas chromatography coupled to time-of-flight mass spectrometry-based metabolomics. Analytical Chemistry, 86, 9186–9195.PubMedGoogle Scholar
  232. Wang, D. C., Sun, C. H., Liu, L. Y., Sun, X. H., Jin, X. W., Song, W. L., Liu, X. Q., & Wan, X. L. (2012). Serum fatty acid profiles using GC-MS and multivariate statistical analysis: Potential biomarkers of Alzheimer’s disease. Neurobiol Aging, 33, 1057–1066.PubMedGoogle Scholar
  233. Wang, H., Chen, Z., Yang, J., Liu, Y., & Lu, F. (2015) Optimization of sample preparation for the metabolomics of bacillus licheniformis by GC-MS. Lecture Notes in Electrical Engineering, 332, 579–588.Google Scholar
  234. Warren, C. R. (2013). Use of chemical ionization for gc–ms metabolite profiling. Metabolomics, 9, 110–120.Google Scholar
  235. Warren, C. R., Aranda, I., & Cano, F. J. (2012). Metabolomics demonstrates divergent responses of two eucalyptus species to water stress. Metabolomics, 8, 186–200.Google Scholar
  236. Weckwerth, W., Loureiro, M. E., Wenzel, K., & Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. PNAS, 101, 7809–7814.PubMedGoogle Scholar
  237. Wehrens, R., Weingart, G., & Mattivi, F. (2014). Metams: An open-source pipeline for GC-MS-based untargeted metabolomics. Journal of Chromatography B, 966, 109–116.Google Scholar
  238. Wells, R. J. (1999). Recent advances in non-silylation derivatization techniques for gas chromatography. Journal of Chromatography A, 843, 1–18.Google Scholar
  239. Welthagen, W., Shellie, R. A., Spranger, J., Ristow, M., Zimmermann, R., & Fiehn, O. (2005). Comprehensive two-dimensional gas chromatography “time-of-flight mass spectrometry (GC–GC-TOF) for high resolution metabolomics: Biomarker discovery on spleen tissue extracts of obese nzo compared to lean c57bl/6 mice. Metabolomics, 1, 65–73.Google Scholar
  240. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3, 1769–1782.PubMedGoogle Scholar
  241. Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15, 473–484.PubMedGoogle Scholar
  242. Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., et al. (2018). Hmdb 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46, D608–D617.PubMedGoogle Scholar
  243. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). Hmdb: The human metabolome database. Nucleic Acids Research, 35, D521–D526.PubMedPubMedCentralGoogle Scholar
  244. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). Metaboanalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.PubMedPubMedCentralGoogle Scholar
  245. Xia, J., & Wishart, D. S. (2010). Metpa: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342–2344.PubMedGoogle Scholar
  246. Xu, F., Zou, L., Ong, C. N., Zou, L., Ong, C. N., & Ong, C. N. (2010). Experiment-originated variations, and multi-peak and multi-origination phenomena in derivatization-based GC-MS metabolomics. TrAC Trends in Analytical Chemistry, 29, 269–280.Google Scholar
  247. Xu, X., Zhao, X., Zhang, Y., Li, D., Su, R., Yang, Q., et al. (2011). Microwave-accelerated derivatization prior to GC-MS determination of sex hormones. Journal of Separation Science, 34, 1455–1462.PubMedGoogle Scholar
  248. Yang, Y., Fan, T. W. M., Lane, A. N., & Higashi, R. M. (2017). Chloroformate derivatization for tracing the fate of amino acids in cells and tissues by multiple stable isotope resolved metabolomics (msirm). Analytica Chimica Acta, 976, 63–73.PubMedPubMedCentralGoogle Scholar
  249. Yi, L., Shi, S., Yi, Z., He, R., Lu, H., & Liang, Y. (2014). Meox-tms derivatization for GC-MS metabolic profiling of urine and application in the discrimination between normal c57bl/6j and type 2 diabetic kk-ay mice. Analytical Methods, 6, 4380–4387.Google Scholar
  250. Zarate, E., Boyle, V., Rupprecht, U., Green, S., Villas-Boas, S. G., Baker, P., & Pinu, F. R. (2016). Fully automated trimethylsilyl (tms) derivatisation protocol for metabolite profiling by GC-MS. Metabolites, 7, 1.PubMedCentralGoogle Scholar
  251. Zhang, J., Zhang, L., Ye, X., Chen, L., Zhang, L., Gao, Y., Kang, J. X., & Cai, C. (2013). Characteristics of fatty acid distribution is associated with colorectal cancer prognosis. Prostaglandins Leukot Essent Fatty Acids, 88, 355–360.PubMedGoogle Scholar
  252. Zhang, W., Hankemeier, T., & Ramautar, R. (2017). Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Current Opinion in Biotechnology, 43, 1–7.PubMedGoogle Scholar
  253. Zhao, C., Nambou, K., Wei, L., Chen, J., Imanaka, T., & Hua, Q. (2014). Evaluation of metabolome sample preparation methods regarding leakage reduction for the oleaginous yeast yarrowia lipolytica. Biochemical Engineering Journal, 82, 63–70.Google Scholar
  254. Zhou, J., Huang, Z.-A., Kumar, U., & Chen, D. D. Y. (2017). Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Analytica Chimica Acta, 996, 1–9.PubMedGoogle Scholar
  255. Zuber, J., Kroll, M. M., Rathsack, P., & Otto, M. (2016) Gas chromatography/atmospheric pressure chemical ionization-fourier transform ion cyclotron resonance mass spectrometry of pyrolysis oil from german brown coal. International Journal of Analytical Chemistry, 200, 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Land and WaterCommonwealth Scientific & Industrial Research Organization (CSIRO)BrisbaneAustralia
  2. 2.The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
  3. 3.Metabolomics Australia, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  4. 4.Trajan Scientific and MedicalRingwoodAustralia
  5. 5.Chemistry Section, School of Science and TechnologyUniversity of CamerinoCamerinoItaly
  6. 6.Department of Food ScienceUniversity of CopenhagenFrederiksberg CDenmark
  7. 7.Metabolomics Australia, School of BioSciencesThe University of MelbourneParkvilleAustralia
  8. 8.Australian Centre for Research on Separation Science (ACROSS), School of ScienceRMIT UniversityMelbourneAustralia
  9. 9.School of Health and Biomedical Sciences, Discipline of Laboratory MedicineRMIT UniversityBundooraAustralia

Personalised recommendations