, 14:149 | Cite as

Metabolomic biomarkers and novel dietary factors associated with gestational diabetes in China

  • Xuyang Chen
  • Jamie V. de Seymour
  • Ting-Li Han
  • Yinyin Xia
  • Chang Chen
  • Ting Zhang
  • Hua ZhangEmail author
  • Philip N. Baker
Original Article



Gestational diabetes mellitus (GDM) is impaired glucose tolerance first recognised during pregnancy; its development is associated with many adverse outcomes. Mechanisms of GDM development are not fully elucidated and few studies have used Chinese participants.


The aim of this study was to investigate the maternal metabolome associated with GDM in a Chinese population, and explore the relationship with maternal diet.


Ninety-three participants were recruited at 26–28 weeks’ gestation from Chongqing, China. Maternal urine, serum, and hair metabolomes were analysed using gas and liquid chromatography–mass spectrometry. Dietary intake was assessed using a 96-item food frequency questionnaire.


Of the 1064 metabolites identified, 73 were significantly different between cases and controls (P < 0.05), but only 2-aminobutyric acid had both a p- and q-value < 0.05. A “snack-based-dietary-pattern” was associated with an increased likelihood of GDM (odds ratio 2·1; 95% confidence interval 1.1–3.9). The association remained significant after adjustment for calorie intake but not food volume.


This study provides a comprehensive characterization of the maternal metabolome. The snack-based dietary pattern associated with GDM suggests that timing and frequency of consumption are important factors in the relationship between maternal diet and GDM.


Gestational diabetes Metabolomics Maternal diet Biomarker 



We acknowledge the LC–MS scientific support provided by Dr. Kai Law. We also thank Xun Mao and Diqi Zhao for the help of data and sample collection.

Author Contributions

YX, PB and HZ conceived the idea and designed the study. TZ and XC collected the questionnaires and samples. TH, CC, and JdS analysed the data. XC, JdS, and TH contributed to the writing of the manuscript.


This work was supported by the National Natural Science Foundation of China [Grant Nos. 81571453, 81771607, 81701477, 81650110522] and The 111 Project [Grant No. Yuwaizhuan (2016)32]. The funders were not involved in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was granted by the Ethics committee of the first affiliated hospital of Chongqing Medical University and written informed consent was obtained from all participants.

Supplementary material

11306_2018_1445_MOESM1_ESM.docx (235 kb)
Supplementary material 1 (DOCX 235 KB)
11306_2018_1445_MOESM2_ESM.xlsx (15 kb)
Supplementary material 2 (XLSX 15 KB)
11306_2018_1445_MOESM3_ESM.xlsx (15 kb)
Supplementary material 3 (XLSX 14 KB)


  1. Bauersachs, T., Compaore, J., Hopmans, E. C., Stal, L. J., Schouten, S., & Sinninghe Damste, J. S. (2009). Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry, 70, 2034–2039.CrossRefGoogle Scholar
  2. Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.CrossRefGoogle Scholar
  3. Broecker, S., Herre, S., & Pragst, F. 2012. General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Forensic Science International 218, 68–81.CrossRefGoogle Scholar
  4. Chen, X., Zhao, D., Mao, X., Xia, Y., Baker, P. N., & Zhang, H. 2016. Maternal dietary patterns and pregnancy outcome. Nutrients 8, 351CrossRefGoogle Scholar
  5. Chong, Y. S., Cai, S., Lin, H., Soh, S. E., Lee, Y. S., Leow, M. K., Chan, Y. H., Chen, L., Holbrook, J. D., Tan, K. H., Rajadurai, V. S., Yeo, G. S., Kramer, M. S., Saw, S. M., Gluckman, P. D., Godfrey, K. M., Kwek, K., & Group, G. S. (2014). Ethnic differences translate to inadequacy of high-risk screening for gestational diabetes mellitus in an asian population: A cohort study. BMC Pregnancy Childbirth, 14, 345.CrossRefGoogle Scholar
  6. Choong, E., Bondolfi, G., Etter, M., Jermann, F., Aubry, J. M., Bartolomei, J., Gholam-Rezaee, M., & Eap, C. B. (2012). Psychotropic drug-induced weight gain and other metabolic complications in a swiss psychiatric population. Journal of Psychiatric Research, 46, 540–548.CrossRefGoogle Scholar
  7. De Livera, A. M., Sysi-Aho, M., Jacob, L., Gagnon-Bartsch, J. A., Castillo, S., Simpson, J. A., & Speed, T. P. (2015). Statistical methods for handling unwanted variation in metabolomics data. Analytical Chemistry, 87, 3606–3615.CrossRefGoogle Scholar
  8. Federation, I. D. (2015). IDF Diabetes Atlas (7th Ed). Retrieved July 23, 2017, from http://www.Diabetesatlas.Org.
  9. Ferrara, A. (2007). Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care, 30(Suppl 2), S141–S146.CrossRefGoogle Scholar
  10. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J., Ryals, J. A., Milburn, M. V., Nannipieri, M., Camastra, S., Natali, A., Ferrannini, E., & Group, R. S. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE. 5, E10883.CrossRefGoogle Scholar
  11. He, J. R., Yuan, M. Y., Chen, N. N., Lu, J. H., Hu, C. Y., Mai, W. B., Zhang, R. F., Pan, Y. H., Qiu, L., Wu, Y. F., Xiao, W. Q., Liu, Y., Xia, H. M., & Qiu, X. (2015). Maternal dietary patterns and gestational diabetes mellitus: A large prospective cohort study in China. British Journal of Nutrition, 113, 1292–1300.CrossRefGoogle Scholar
  12. Hong, G.-F. (1992). The nitrogen fixation and its research in China. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  13. Karpievitch, Y. V., Dabney, A. R., & Smith, R. D. (2012). Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinformatics, 13(Suppl 16), S5.CrossRefGoogle Scholar
  14. Karpievitch, Y. V., Nikolic, S. B., Wilson, R., Sharman, J. E., & Edwards, L. M. (2014). Metabolomics data normalization with eigenms. PLoS ONE, 9, E116221.CrossRefGoogle Scholar
  15. Karpievitch, Y. V., Taverner, T., Adkins, J. N., Callister, S. J., Anderson, G. A., Smith, R. D., & Dabney, A. R. (2009). Normalization of peak intensities in bottom-up ms-based proteomics using singular value decomposition. Bioinformatics, 25, 2573–2580.CrossRefGoogle Scholar
  16. Kim, C., Newton, K. M., & Knopp, R. H. (2002). Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care, 25, 862–868.Google Scholar
  17. Landaas, S. (1975). The formation of 2-hydroxybutyric acid in experimental animals. Clinica Chimica Acta, 58, 23–32.CrossRefGoogle Scholar
  18. Law, K. P., Han, T. L., Mao, X., & Zhang, H. (2017). Tryptophan and purine metabolites are consistently upregulated in the urinary metabolome of patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women Part 2. Clinica Chimica Acta, 468, 126–139.CrossRefGoogle Scholar
  19. Law, K. P., Mao, X., Han, T. L., & Zhang, H. (2016). Unsaturated plasma phospholipids are consistently lower in the patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of chinese pregnant women part 1. Clinica Chimica Acta, 465, 53–71.CrossRefGoogle Scholar
  20. Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30, 42–59.CrossRefGoogle Scholar
  21. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological nmr spectroscopic data. Xenobiotica, 29, 1181–1189.CrossRefGoogle Scholar
  22. Nordin, C., & Bertilsson, L. (1995). Active hydroxymetabolites of antidepressants. emphasis on E-10-hydroxy-nortriptyline. Clinical Pharmacokinetics, 28, 26–40.CrossRefGoogle Scholar
  23. O’gorman, A., Gibbons, H., & Brennan, L. (2013). Metabolomics in the identification of biomarkers of dietary intake. Computational and Structural Biotechnology Journal, 4, E201301004.CrossRefGoogle Scholar
  24. International Association of Diabetes, Pregnancy Study Groups Consensus, Metzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano, P. A., Damm, P., Dyer, A. R., Leiva, A., Hod, M., Kitzmiler, J. L., Lowe, L. P., Mcintyre, H. D., Oats, J. J., Omori, Y., & Schmidt, M. I. (2010). International Association of Diabetes And Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care, 33, 676–682.CrossRefGoogle Scholar
  25. Reece, E. A., Leguizamon, G., & Wiznitzer, A. (2009). Gestational diabetes: The need for a common ground. Lancet, 373, 1789–1797.CrossRefGoogle Scholar
  26. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Muller, M. (2011). Proc: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.CrossRefGoogle Scholar
  27. Smart, K. F., Aggio, R. B., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.CrossRefGoogle Scholar
  28. Storey, J. D., & Taylor J. E. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society, Series B, 66, 187–205.CrossRefGoogle Scholar
  29. Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440–9445.CrossRefGoogle Scholar
  30. Sulek, K., Han, T. L., Villas-Boas, S. G., Wishart, D. S., Soh, S. E., Kwek, K., Gluckman, P. D., Chong, Y. S., Kenny, L. C., & Baker, P. N. (2014). Hair metabolomics: Identification of fetal compromise provides proof of concept for biomarker discovery. Theranostics, 4, 953–959.CrossRefGoogle Scholar
  31. United States Environmental Protection Agency. (2017). Health and ecological effects (Online). Retrieved July 23, 2017, from http://www.Epa.Gov/Nutrient-Policy-Data/Health-And-Ecological-Effects.
  32. Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
  33. Willett, W., Manson, J., & Liu, S. (2002). Glycemic index, glycemic load, and risk of type 2 diabetes. The American Journal of Clinical Nutrition, 76, 274S–280S.CrossRefGoogle Scholar
  34. Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134, 489–492.CrossRefGoogle Scholar
  35. Xia, J., & Wishart, D. S. (2016). Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 14.10.1–14.10.91.CrossRefGoogle Scholar
  36. Yang, Y. X., Wang, G. Y., & Pan, X. C. (2009). China food composition (Book 1). Beijing: Peking University Medical Press.Google Scholar
  37. Zhu, W. W., Yang, H. X., Wang, C., Su, R. N., Feng, H., & Kapur, A. (2017). High prevalence of gestational diabetes mellitus in beijing: Effect of maternal birth weight and other risk factors. Chinese Medical Journal (Engl), 130, 1019–1025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuyang Chen
    • 1
    • 2
  • Jamie V. de Seymour
    • 3
  • Ting-Li Han
    • 1
    • 3
  • Yinyin Xia
    • 4
  • Chang Chen
    • 1
    • 5
  • Ting Zhang
    • 1
    • 2
  • Hua Zhang
    • 1
    • 2
    Email author
  • Philip N. Baker
    • 1
    • 6
  1. 1.Department of Obstetrics and GynaecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
  3. 3.Liggins InstituteThe University of AucklandAucklandNew Zealand
  4. 4.School of Public Health and ManagementChongqing Medical UniversityChongqingChina
  5. 5.Institute of Life SciencesChongqing Medical UniversityChongqingChina
  6. 6.College of Medicine, Biological Sciences and PsychologyUniversity of LeicesterLeicesterUK

Personalised recommendations