Advertisement

Metabolomics

, 14:107 | Cite as

Investigation of altered urinary metabolomic profiles of invasive ductal carcinoma of breast using targeted and untargeted approaches

  • Tushar H. More
  • Ravindra Taware
  • Khushman Taunk
  • Venkatesh Chanukuppa
  • Venkateshwarlu Naik
  • Anupama Mane
  • Srikanth Rapole
Original Article

Abstract

Introduction

Invasive ductal carcinoma (IDC) is a type of breast cancer, usually detected in advanced stages due to its asymptomatic nature which ultimately leads to low survival rate. Identification of urinary metabolic adaptations induced by IDC to understand the disease pathophysiology and monitor therapy response would be a helpful approach in clinical settings. Moreover, its non-invasive and cost effective strategy better suited to minimize apprehension among high risk population.

Objective

This study aims toward investigating the urinary metabolic alterations of IDC by targeted (LC-MRM/MS) and untargeted (GC–MS) approaches for the better understanding of the disease pathophysiology and monitoring therapy response.

Methods

Urinary metabolic alterations of IDC subjects (63) and control subjects (63) were explored by targeted (LC-MRM/MS) and untargeted (GC–MS) approaches. IDC specific urinary metabolomics signature was extracted by applying both univariate and multivariate statistical tools.

Results

Statistical analysis identified 39 urinary metabolites with the highest contribution to metabolomic alterations specific to IDC. Out of which, 19 metabolites were identified from targeted LC-MRM/MS analysis, while 20 were identified from the untargeted GC–MS analysis. Receiver operator characteristic (ROC) curve analysis evidenced 6 most discriminatory metabolites from each type of approach that could differentiate between IDC subjects and controls with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in IDC including sugar, amino acid, nucleotide metabolism, TCA cycle etc.

Conclusions

Overall, this study provides valuable inputs regarding altered urinary metabolites which improved our knowledge on urinary metabolomic alterations induced by IDC. Moreover, this study identified several dysregulated metabolic pathways which offer further insight into the disease pathophysiology.

Keywords

Breast cancer Invasive ductal carcinoma Urine Metabolomics LC-MRM/MS GC–MS 

Notes

Acknowledgements

The authors are grateful to all the volunteers who participated in this study. THM acknowledges Department of Biotechnology, Govt. of India for fellowship. RT acknowledges Council of Scientific and Industrial Research, New Delhi, India for research associateship.

Author contributions

Conceived the study: THM, RT, SR; Designed the study: THM, RT, SR; Performed the experiments: THM, RT; Compiled the data: THM, RT, KT, VC, VN, SR; Analyzed the data and performed the multivariate statistical analysis and bioinformatics: THM, RT, KT, VC, VN, SR; Drafted the manuscript: THM, AM, SR; Provided clinical samples: AM; Provided chemicals and reagents: SR.

Funding

This research was supported by Department of Biotechnology, Govt. of India, India (RGYI Grant No. BT/PR6384/GBD/27/409/2012).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests in relation to the work described.

Ethical approval

The study was approved by the Ethics Committee of the Poona medical research foundation and National Centre for Cell Science (NCCS), Pune.

Informed consent

Fasting urine samples were collected with institutional review approval and after informed consent from all individual participants included in the study.

Research involving human participants and/or animals

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11306_2018_1405_MOESM1_ESM.pptx (540 kb)
Supplementary material 1 (PPTX 539 KB)

References

  1. Brock, B., Kamysek, S., Silz, J., Trefz, P., Schubert, J. K., & Miekisch, W. (2017). Monitoring of breath VOCs and electrical impedance tomography under pulmonary recruitment in mechanically ventilated patients. Journal of Breath Research, 11(1), 016005.CrossRefPubMedGoogle Scholar
  2. Budczies, J., & Denkert, C. (2016). Tissue-based metabolomics to analyze the breast cancer metabolome. Recent Results in Cancer Research, 207, 157–175.  https://doi.org/10.1007/978-3-319-42118-6_7.CrossRefPubMedGoogle Scholar
  3. Cardaci, S., & Ciriolo, M. R. (2012). TCA cycle defects and cancer: When metabolism tunes Redox state. International Journal of Cell Biology.  https://doi.org/10.1155/2012/161837.PubMedPubMedCentralGoogle Scholar
  4. Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou, X., Zheng, M., et al. (2012). Distinct urinary metabolic profile of human colorectal cancer. Journal of Proteome Research, 11(2), 1354–1363.  https://doi.org/10.1021/pr201001a.CrossRefPubMedGoogle Scholar
  5. Cho, W. C. (2010). Omics approaches in cancer research. In An omics perspective on cancer research (pp. 1–9), Springer: Heidelberg.CrossRefGoogle Scholar
  6. Christensen, B. C., Smith, A. A., Zheng, S., Koestler, D. C., Houseman, E. A., Marsit, C. J., et al. (2011). DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. The Journal of the National Cancer Institute, 103(2), 143–153.  https://doi.org/10.1093/jnci/djq497.CrossRefPubMedGoogle Scholar
  7. DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: A Cancer Journal for Clinicians, 66(1), 31–42.  https://doi.org/10.3322/caac.21320.Google Scholar
  8. Dikshit, R., Gupta, P. C., Ramasundarahettige, C., Gajalakshmi, V., Aleksandrowicz, L., Badwe, R., et al. (2012). Cancer mortality in India: A nationally representative survey. Lancet, 379(9828), 1807–1816.  https://doi.org/10.1016/S0140-6736(12)60358-4.CrossRefPubMedGoogle Scholar
  9. Echeverry, G., Hortin, G. L., & Rai, A. J. (2010). Introduction to urinalysis: Historical perspectives and clinical application. Methods in Molecular Biology, 641, 1–12.  https://doi.org/10.1007/978-1-60761-711-2_1.CrossRefPubMedGoogle Scholar
  10. Eriksson, L., Byrne, T., Johansson, E., Trygg, J., & Vikström, C. (2013). Multi-and megavariate data analysis basic principles and applications: Umetrics Academy.Google Scholar
  11. Etzioni, R., Urban, N., Ramsey, S., McIntosh, M., Schwartz, S., Reid, B., et al. (2003). The case for early detection. Nature Reviews Cancer, 3(4), 243–252.  https://doi.org/10.1038/nrc1041.CrossRefPubMedGoogle Scholar
  12. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348.  https://doi.org/10.1038/35077213.CrossRefPubMedGoogle Scholar
  13. Fajardo, A. M., Piazza, G. A., & Tinsley, H. N. (2014). The role of cyclic nucleotide signaling pathways in cancer: Targets for prevention and treatment. Cancers, 6(1), 436–458.  https://doi.org/10.3390/cancers6010436.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fan, Y., Zhou, X., Xia, T. S., Chen, Z., Li, J., Liu, Q., et al. (2016). Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget, 7(9), 9925–9938.  https://doi.org/10.18632/oncotarget.7155.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386.  https://doi.org/10.1002/ijc.29210.CrossRefPubMedGoogle Scholar
  16. Fernandez-Peralbo, M. A., Gomez-Gomez, E., Calderon-Santiago, M., Carrasco-Valiente, J., Ruiz-Garcia, J., Requena-Tapia, M. J., et al. (2016). Prostate cancer patients-negative biopsy controls discrimination by untargeted metabolomics analysis of urine by LC-QTOF: Upstream information on other omics. Scientific Reports, 6, 38243.  https://doi.org/10.1038/srep38243.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ferretti, A., D’Ascenzo, S., Knijn, A., Iorio, E., Dolo, V., Pavan, A., et al. (2002). Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a(1)H NMR study. British Journal of Cancer, 86(7), 1180–1187.  https://doi.org/10.1038/sj.bjc.6600189.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fiehn, O., Sumner, L. W., Rhee, S. Y., Ward, J., Dickerson, J., Lange, B. M., et al. (2007). Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 3(3), 195–201.  https://doi.org/10.1007/s11306-007-0068-0.CrossRefGoogle Scholar
  19. Freed-Pastor, W. A., Mizuno, H., Zhao, X., Langerod, A., Moon, S. H., Rodriguez-Barrueco, R., et al. (2012). Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 148(1–2), 244–258.  https://doi.org/10.1016/j.cell.2011.12.017.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goldstein, J. L., & Brown, M. S. (1990). Regulation of the mevalonate pathway. Nature, 343(6257), 425–430.  https://doi.org/10.1038/343425a0.CrossRefPubMedGoogle Scholar
  21. Griffin, J. L., Nicholls, A. W., Daykin, C. A., Heald, S., Keun, H. C., Schuppe-Koistinen, I., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Mammalian/in vivo experiments. Metabolomics, 3(3), 179–188.  https://doi.org/10.1007/s11306-007-0077-z.CrossRefGoogle Scholar
  22. Hart, C. D., Tenori, L., Luchinat, C., & Di Leo, A. (2016). Metabolomics in breast cancer: Current status and perspectives. Advances in Experimental Medicine and Biology, 882, 217–234.  https://doi.org/10.1007/978-3-319-22909-6_9.CrossRefPubMedGoogle Scholar
  23. Hart, C. D., Tenori, L., Luchinat, C., & Di Leo, A. (2016). Metabolomics in breast cancer: Current status and perspectives. In Novel biomarkers in the continuum of breast cancer (pp. 217–234): Springer.Google Scholar
  24. Heng, B., Lim, C. K., Lovejoy, D. B., Bessede, A., Gluch, L., & Guillemin, G. J. (2016). Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget, 7(6), 6506–6520.  https://doi.org/10.18632/oncotarget.6467.CrossRefPubMedGoogle Scholar
  25. Hirschey, M. D., DeBerardinis, R. J., Diehl, A. M. E., Drew, J. E., Frezza, C., Green, M. F., et al. (2015). Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology.  https://doi.org/10.1016/j.semcancer.2015.10.002.Google Scholar
  26. Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336(6084), 1040–1044.  https://doi.org/10.1126/science.1218595.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jerzak, K. J., Laureano, M., Elsharawi, R., Kavsak, P., Chan, K. K., Dhesy-Thind, S. K., et al. (2017). Targeted metabolomics in colorectal cancer: A strategic approach using standardized laboratory tests of the blood and urine. Hypoxia, 5, 61–66.  https://doi.org/10.2147/HP.S127560.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiang, P., Du, W., & Wu, M. (2014). Regulation of the pentose phosphate pathway in cancer. Protein and Cell, 5(8), 592–602.  https://doi.org/10.1007/s13238-014-0082-8.CrossRefPubMedGoogle Scholar
  29. Kalita-de Croft, P., Al-Ejeh, F., McCart Reed, A. E., Saunus, J. M., & Lakhani, S. R. (2016). ‘Omics approaches in breast cancer research and clinical practice. Advances in Anatomic Pathology, 23(6), 356–367.  https://doi.org/10.1097/PAP.0000000000000128.CrossRefPubMedGoogle Scholar
  30. Kellenberger, L. D., Bruin, J. E., Greenaway, J., Campbell, N. E., Moorehead, R. A., Holloway, A. C., et al. (2010). The role of dysregulated glucose metabolism in epithelial ovarian cancer. Journal of Oncology.  https://doi.org/10.1155/2010/514310.Google Scholar
  31. Kelly, R. S., Heiden, M. G., Giovannucci, E., & Mucci, L. A. (2016). Metabolomic biomarkers of prostate cancer: Prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiology and Prevention Biomarkers, 137, 2124–2132.Google Scholar
  32. Kentsis, A. (2011). Challenges and opportunities for discovery of disease biomarkers using urine proteomics. Pediatrics International, 53(1), 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li, B. Q., Huang, T., Liu, L., Cai, Y. D., & Chou, K. C. (2012). Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE, 7(4), e33393.  https://doi.org/10.1371/journal.pone.0033393.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li, J., Humphreys, K., Darabi, H., Rosin, G., Hannelius, U., Heikkinen, T., et al. (2010). A genome-wide association scan on estrogen receptor-negative breast cancer. Breast Cancer Research, 12(6), R93.  https://doi.org/10.1186/bcr2772.CrossRefPubMedGoogle Scholar
  35. Li, M. (2015). Urine reflection of changes in blood. In Urine proteomics in kidney disease biomarker discovery (pp. 13–19): Springer.Google Scholar
  36. Lin, J., Lee, I. M., Song, Y., Cook, N. R., Selhub, J., Manson, J. E., et al. (2010). Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Research, 70(6), 2397–2405.  https://doi.org/10.1158/0008-5472.CAN-09-3648.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Makki, J. (2015). Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clinical Medicine Insights: Pathology, 8, 23–31.  https://doi.org/10.4137/CPath.S31563.PubMedGoogle Scholar
  38. Makowski, L., Zhou, C., Zhong, Y., Kuan, P. F., Fan, C., Sampey, B. P., et al. (2014). Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer. Gynecologic Oncology, 133(1), 90–97.  https://doi.org/10.1016/j.ygyno.2013.12.026.CrossRefPubMedPubMedCentralGoogle Scholar
  39. More, T. H., RoyChoudhury, S., Christie, J., Taunk, K., Mane, A., Rapole, S., et al. (2017). Metabolomic alterations in invasive ductal carcinoma of breast: A comprehensive metabolomic study using tissue and serum samples. Oncotarget, 9, 2678–2696.PubMedPubMedCentralGoogle Scholar
  40. Pisitkun, T., Johnstone, R., & Knepper, M. A. (2006). Discovery of urinary biomarkers. Molecular & Cellular Proteomics, 5(10), 1760–1771.  https://doi.org/10.1074/mcp.R600004-MCP200.CrossRefGoogle Scholar
  41. RoyChoudhury, S., More, T. H., Chattopadhyay, R., Lodh, I., Ray, C. D., Bose, G., et al. (2017). Polycystic ovary syndrome in Indian women: A mass spectrometry based serum metabolomics approach. Metabolomics, 13(10), 115.CrossRefGoogle Scholar
  42. Saez, G., Thornalley, P. J., Hill, H. A., Hems, R., & Bannister, J. V. (1982). The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochimica et Biophysica Acta, 719(1), 24–31.CrossRefPubMedGoogle Scholar
  43. Saraswat, M., Mrudula, T., Kumar, P. U., Suneetha, A., Rao Rao, T. S., Srinivasulu, M., et al. (2006). Overexpression of aldose reductase in human cancer tissues. Medical Science Monitor, 12(12), CR525–C529.PubMedGoogle Scholar
  44. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010). Various types and management of breast cancer: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(2), 109–126.Google Scholar
  45. Shi, H., Li, X., Zhang, Q., Yang, H., & Zhang, X. (2016). Discovery of urine biomarkers for bladder cancer via global metabolomics. Biomarkers, 21(7), 578–588.  https://doi.org/10.3109/1354750X.2016.1171903.CrossRefPubMedGoogle Scholar
  46. Shin, J. M., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Metabolomics of head and neck cancer: A mini-review. Frontiers in Physiology, 7, 526.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Spitz, D. R., Sim, J. E., Ridnour, L. A., Galoforo, S. S., & Lee, Y. J. (2000). Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Annals of the New York Academy of Sciences, 899, 349–362.CrossRefPubMedGoogle Scholar
  48. Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440.  https://doi.org/10.1158/1078-0432.CCR-08-1059.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sukul, P., Schubert, J. K., Kamysek, S., Trefz, P., & Miekisch, W. (2017). Applied upper-airway resistance instantly affects breath components: A unique insight into pulmonary medicine. Journal of Breath Research, 11(4), 047108.CrossRefPubMedGoogle Scholar
  50. Sukul, P., Trefz, P., Kamysek, S., Schubert, J. K., & Miekisch, W. (2015). Instant effects of changing body positions on compositions of exhaled breath. Journal of Breath Research, 9(4), 047105.CrossRefPubMedGoogle Scholar
  51. Sukul, P., Trefz, P., Schubert, J. K., & Miekisch, W. (2014). Immediate effects of breath holding maneuvers onto composition of exhaled breath. Journal of Breath Research, 8(3), 037102.CrossRefPubMedGoogle Scholar
  52. Tammali, R., Srivastava, S. K., & Ramana, K. V. (2011). Targeting aldose reductase for the treatment of cancer. Curr Cancer Drug Targets, 11(5), 560–571.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Trefz, P., Kamysek, S., Fuchs, P., Sukul, P., Schubert, J. K., & Miekisch, W. (2017). Drug detection in breath: Non-invasive assessment of illicit or pharmaceutical drugs. Journal of Breath Research, 11(2), 024001.CrossRefPubMedGoogle Scholar
  54. Triba, M. N., Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., et al (2015). PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Molecular BioSystems, 11(1), 13–19.CrossRefPubMedGoogle Scholar
  55. Turkoglu, O., Zeb, A., Graham, S., Szyperski, T., Szender, J. B., Odunsi, K., et al. (2016). Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics, 12(4), 60.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257.  https://doi.org/10.1093/nar/gkv380.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yeganeh, B., Wiechec, E., Ande, S. R., Sharma, P., Moghadam, A. R., Post, M., et al. (2014). Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacology & Therapeutics, 143(1), 87–110.  https://doi.org/10.1016/j.pharmthera.2014.02.007.CrossRefGoogle Scholar
  58. Zhang, A., Sun, H., Wu, X., & Wang, X. (2012). Urine metabolomics. Clinica Chimica Acta, 414, 65–69.  https://doi.org/10.1016/j.cca.2012.08.016.CrossRefGoogle Scholar
  59. Zhang, F., Zhang, Y., Zhao, W., Deng, K., Wang, Z., Yang, C., et al. (2017). Metabolomics for biomarker discovery in the diagnosis, prognosis, survival and recurrence of colorectal cancer: A systematic review. Oncotarget, 8(21), 35460.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Proteomics LabNational Centre for Cell SciencePuneIndia
  2. 2.Savitribai Phule Pune UniversityPuneIndia
  3. 3.Grant Medical Foundation, Ruby Hall ClinicPuneIndia

Personalised recommendations