, 14:105 | Cite as

Metabolomic identification of diagnostic serum-based biomarkers for advanced stage melanoma

  • A. W. L. Bayci
  • D. A. BakerEmail author
  • A. E. Somerset
  • O. Turkoglu
  • Z. Hothem
  • R. E. Callahan
  • R. Mandal
  • B. Han
  • T. Bjorndahl
  • D. Wishart
  • R. Bahado-Singh
  • S. F. Graham
  • R. Keidan
Original Article



Melanoma is a highly aggressive malignancy and is currently one of the fastest growing cancers worldwide. While early stage (I and II) disease is highly curable with excellent prognosis, mortality rates rise dramatically after distant spread. We sought to identify differences in the metabolome of melanoma patients to further elucidate the pathophysiology of melanoma and identify potential biomarkers to aid in earlier detection of recurrence.


Using 1H NMR and DI–LC–MS/MS, we profiled serum samples from 26 patients with stage III (nodal metastasis) or stage IV (distant metastasis) melanoma and compared their biochemical profiles with 46 age- and gender-matched controls.


We accurately quantified 181 metabolites in serum using a combination of 1H NMR and DI–LC–MS/MS. We observed significant separation between cases and controls in the PLS-DA scores plot (permutation test p-value = 0.002). Using the concentrations of PC-aa-C40:3, dl-carnitine, octanoyl-l-carnitine, ethanol, and methylmalonyl-l-carnitine we developed a diagnostic algorithm with an AUC (95% CI) = 0.822 (0.665–0.979) with sensitivity and specificity of 100 and 56%, respectively. Furthermore, we identified arginine, proline, tryptophan, glutamine, glutamate, glutathione and ornithine metabolism to be significantly perturbed due to disease (p < 0.05).


Targeted metabolomic analysis demonstrated significant differences in metabolic profiles of advanced stage (III and IV) melanoma patients as compared to controls. These differences may represent a potential avenue for the development of multi-marker serum-based assays for earlier detection of recurrences, allow for newer, more effective targeted therapy when tumor burden is less, and further elucidate the pathophysiologic changes that occur in melanoma.


Melanoma Metabolomics Amino acids Serum biomarkers 


Author contributions

AB, RK, SG and RBS were responsible for conceiving and designing the study. DB and RC wrote the manuscript. AB, AS, DB, ZH and OT performed the research. DW, TB, BH and RM analyzed the data and developed the predictive models. All authors read and approved of the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

This study was approved by the institutional review board (IRB) at William Beaumont Hospital in Royal Oak, Michigan. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Abaffy, T., Möller, M. G., Riemer, D. D., Milikowski, C., & DeFazio, R. A. (2013). Comparative analysis of volatile metabolomics signals from melanoma and benign skin: A pilot study. Metabolomics, 9, 998–1008.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams, S. H., Hoppel, C. L., Lok, K. H., Zhao, L., Wong, S. W., Minkler, P. E., et al. (2009). Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. Journal of Nutrition, 139, 1073–1081.PubMedCrossRefGoogle Scholar
  3. Adrian, B. (1986). Arginine: Biochemistry, physiology, and therapeutic implications. Journal of Parenteral and Enteral Nutrition, 10, 227–238.CrossRefGoogle Scholar
  4. Agarwala, S. S. (2009). Current systemic therapy for metastatic melanoma. Expert Review of Anticancer Therapy, 9, 587–595.PubMedCrossRefGoogle Scholar
  5. Ananieva, E. (2015). Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 6, 281–289.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andrisic, L., Dudzik, D., Barbas, C., Milkovic, L., Grune, T., & Zarkovic, N. (2018). Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biology, 14, 47–58.PubMedCrossRefGoogle Scholar
  7. Balachandran, V. P., Cavnar, M. J., Zeng, S., Bamboat, Z. M., Ocuin, L. M., Obaid, H., et al. (2011). Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Medicine, 17, 1094.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., et al. (2009). Final version of 2009 AJCC melanoma staging and classification. Jounal of Clinical Oncology, 27, 6199–6206.CrossRefGoogle Scholar
  9. Barak, V., Leibovici, V., Peretz, T., Kalichman, I., Lotem, M., & Merims, S. (2015). Assessing response to new treatments and prognosis in melanoma patients, by the Biomarker S-100beta. Anticancer Research, 35, 6755–6760.PubMedGoogle Scholar
  10. Bedikian, A. Y., Johnson, M. M., Warneke, C. L., McIntyre, S., Papadopoulos, N., Hwu, W.-J., et al. (2008). Systemic therapy for unresectable metastatic melanoma: Impact of biochemotherapy on long-term survival. Journal of Immunotoxicology, 5, 201–207.PubMedCrossRefGoogle Scholar
  11. Beger, R. D. (2013). A review of applications of metabolomics in cancer. Metabolites, 3, 552–574.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benvenuto-Andrade, C., Oseitutu, A., Agero, A. L., & Marghoob, A. A. (2005). Cutaneous melanoma: surveillance of patients for recurrence and new primary melanomas. Dermatologic Therapy, 18, 423–435.PubMedCrossRefGoogle Scholar
  13. Bosserhoff, A. K., Kuster, H., & Hein, R. (2004). Elevated MIA levels in the serum of pregnant women and of children. Clinical and Experimental Dermatology: Clinical Dermatology, 29, 628–629.CrossRefGoogle Scholar
  14. Bowles, T. L., Xing, Y., Hu, C.-Y., Mungovan, K. S., Askew, R. L., Chang, G. J., et al. (2010). Conditional survival estimates improve over 5 years for melanoma survivors with node-positive disease. Annals of Surgical Oncology, 17, 2015–2023.PubMedCrossRefGoogle Scholar
  15. Burnet, N. G., Jefferies, S. J., Benson, R. J., Hunt, D. P., & Treasure, F. P. (2005). Years of life lost (YLL) from cancer is an important measure of population burden—And should be considered when allocating research funds. British Journal of Cancer, 92, 241–245.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carlson, J. A., Ross, J. S., Slominski, A., Linette, G., Mysliborski, J., Hill, J., & Mihm, M. Jr. (2005). Molecular diagnostics in melanoma. Journal of the American Academy of Dermatology, 52, 743–775.PubMedCrossRefGoogle Scholar
  17. Carlson, J. A., Slominski, A., Linette, G. P., Mihm, M. C. Jr., & Ross, J. S. (2003). Biomarkers in melanoma: predisposition, screening and diagnosis. Expert Review of Molecular Diagnostics, 3, 163–184.PubMedCrossRefGoogle Scholar
  18. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364(4), 2507–2516.PubMedCrossRefGoogle Scholar
  19. Cromwell, K. D., Ross, M. I., Xing, Y., Gershenwald, J. E., Royal, R. E., Lucci, A., et al. (2012) Variability in melanoma post-treatment surveillance practices by country and physician specialty: A systematic review. Melanoma Research. Scholar
  20. Cuendet, M., & Pezzuto, M. (2000). The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabolism and Drug Interactions, 17(1–4), 109–158.PubMedGoogle Scholar
  21. Cummings, B. S. (2007). Phospholipase A2 as targets for anti-cancer drugs. Biochemical Pharmacology, 74, 949–959.PubMedCrossRefGoogle Scholar
  22. Cummings, B.S., McHowat, J., & Schnellmann, R.G. (2000) Phospholipase A2s in cell injury and death. Journal of Pharmacology and Experimental Therapeutics, 294, 793–799.PubMedGoogle Scholar
  23. De Ingeniis, J., Richardson, R. B., Scott, A. D., Aza-Blanc, D. A., De, P. SK, et al (2012). Functional specialization in proline biosynthesis of melanoma. PLoS ONE, 7, e45190.PubMedPubMedCentralCrossRefGoogle Scholar
  24. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences 104, 19345–19350.CrossRefGoogle Scholar
  25. DiFronzo, L. A., Wanek, L. A., Elashoff, R., & Morton, D. L. (1999). Increased Incidence of Second Primary Melanoma in Patients With a Previous Cutaneous Melanoma. Annals of Surgical Oncology, 6, 705–711.PubMedCrossRefGoogle Scholar
  26. Dong, Q., Patel, M., Scott, K.F., Graham, G.G., Russell, P.J., & Sved, P. (2006) Oncogenic action of phospholipase A2 in prostate cancer. Cancer Letters 240, 9–16.PubMedCrossRefGoogle Scholar
  27. Eidsmoe, K. (2018) Key statistics for melanoma skin cancer. American Cancer Society.Google Scholar
  28. Elia, I., Broekaert, D., Christen, S., Boon, R., Radaelli, E., Orth, M. F., et al. (2017). Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications, 8, 15267.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Emwas, A.-H. M. (2015). The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In J. T. Bjerrum (Ed.), Metabonomics: Methods and protocols (pp. 161–193). New York: Springer New York.Google Scholar
  30. Ferrone, C. R., Ben Porat, L., Panageas, K. S., et al. (2005). Clinicopathological features of and risk factors for multiple primary melanomas. JAMA, 294, 1647–1654.PubMedCrossRefGoogle Scholar
  31. Feun, L., You, M., Wu, C. J., Kuo, M. T., Wangpaichitr, M., Spector, S., & Savaraj, N. (2008). Arginine deprivation as a targeted therapy for cancer. Current Pharmaceutical Design, 14, 1049–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. New England Journal of Medicine, 367, 107–114.PubMedCrossRefGoogle Scholar
  33. Ganti, S., Taylor, S. L., Abu Aboud, O., Yang, J., Evans, C., Osier, M. V., et al. (2012) Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Cancer Research, 72(14), 3471–3479PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gao, R., Cheng, J., Fan, C., Shi, X., Cao, Y., Sun, B., et al. (2015). Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma. Science Reports, 5, 18175.CrossRefGoogle Scholar
  35. Garbe, C., & Eigentler, T. K. (2007). Diagnosis and treatment of cutaneous melanoma: State of the art 2006. Melanoma Research, 17, 117–127.PubMedCrossRefGoogle Scholar
  36. Gonzalez-Dominguez, R., Garcia, A., Garcia-Barrera, T., Barbas, C., & Gomez-Ariza, J. L. (2014). Metabolomic profiling of serum in the progression of Alzheimer’s disease by capillary electrophoresis-mass spectrometry. Electrophoresis, 35, 3321–3330.PubMedCrossRefGoogle Scholar
  37. Guo, J., Si, L., Kong, Y., Flaherty, K. T., Xu, X., Zhu, Y., et al. (2011). Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. Journal of Clinical Oncology, 29, 2904–2909.PubMedCrossRefGoogle Scholar
  38. Ha, C. Y., Kim, J. Y., Paik, J. K., Kim, O. Y., Paik, Y. H., Lee, E. J., & Lee, J. H. (2012). The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf), 76, 674–682.CrossRefGoogle Scholar
  39. Hasim, A., Aili, A., Maimaiti, A., Mamtimin, B., Abudula, A., & Upur, H. (2013). Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Molecular Biology Reports, 40, 5853–5859.PubMedCrossRefGoogle Scholar
  40. Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363, 711–723.PubMedCrossRefGoogle Scholar
  41. Homann, N. (2001). Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addiction Biology, 6, 309–323.PubMedCrossRefGoogle Scholar
  42. Ino, K., Yamamoto, E., Shibata, K., Kajiyama, H., Yoshida, N., Terauchi, M., et al. (2008). Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: Its association with disease progression and survival. Clinical Cancer Research, 14, 2310–2317.PubMedCrossRefGoogle Scholar
  43. Izzo, F., Marra, P., Beneduce, G., Castello, G., Vallone, P., Rosa, V. D., et al. (2004). Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: Results from phase I/II studies. Journal of Clinical Oncology, 22, 1815–1822.PubMedCrossRefGoogle Scholar
  44. Jennings, L., & Murphy, G. M. (2009). Predicting outcome in melanoma: Where are we now? British Journal of Dermatology, 161, 496–503.PubMedCrossRefGoogle Scholar
  45. Jolanta, P., Bozena, P.-S., Robert, B., Dorota, J., Piotr, N., Stanislaw, L., et al. (2011). L-Carnitine—Metabolic functions and meaning in humans life. Current Drug Metabolism, 12, 667–678.CrossRefGoogle Scholar
  46. Kelly, R. S., Vander Heiden, M. G., Giovannucci, E., & Mucci, L. A. (2016). Metabolomic biomarkers of prostate cancer: prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiology and Prevention Biomarkers, 25, 887–906.CrossRefGoogle Scholar
  47. Kluger, H. M., Hoyt, K., Bacchiocchi, A., Mayer, T., Kirsch, J., Kluger, Y., et al. (2011). Plasma markers for identifying patients with metastatic melanoma. Clinical Cancer Research, 17, 2417–2425.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klupczynska, A., Dereziński, P., Dyszkiewicz, W., Pawlak, K., Kasprzyk, M., & Kokot, Z. J. (2016). Evaluation of serum amino acid profiles’ utility in non-small cell lung cancer detection in Polish population. Lung Cancer, 100, 71–76.PubMedCrossRefGoogle Scholar
  49. Kobayashi, E., Masuda, M., Nakayama, R., Ichikawa, H., Satow, R., Shitashige, M., et al. (2010). Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Molecular Cancer Therapeutics, 9, 535–544.PubMedCrossRefGoogle Scholar
  50. Kobayashi, T., Nishiumi, S., Ikeda, A., Yoshie, T., Sakai, A., Matsubara, A., et al. (2013). A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiology Biomarkers & Prevention 22, 571–579.CrossRefGoogle Scholar
  51. Kuhn, T., Floegel, A., Sookthai, D., Johnson, T., Rolle-Kampczyk, U., Otto, W., et al. (2016). Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Medicine, 14, 13.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lacey, J. M., & Wilmore, D. W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Reviews, 48, 297–309.PubMedCrossRefGoogle Scholar
  53. Larson, A. R., Konat, E., & Alani, R. M. (2009). Melanoma biomarkers: Current status and vision for the future. Nature Clinical Practice Oncology, 6, 105–117.PubMedCrossRefGoogle Scholar
  54. Laye, J. P., & Gill, J. H. (2003). Phospholipase A2 expression in tumours: A target for therapeutic intervention? Drug Discovery Today, 8, 710–716.PubMedCrossRefGoogle Scholar
  55. Lehman, S., & Teunissen, C. E. (2016). Biomarkers of Alzheimer’s disease: The present and the future. Lausanne: Frontiers Media SA.CrossRefGoogle Scholar
  56. Levi, F., Randimbison, L., Te, V.-C., & La Vecchia, C. (2005). High constant incidence rates of second cutaneous melanomas. International Journal of Cancer, 117, 877–879.PubMedCrossRefGoogle Scholar
  57. Liesenfeld, D. B., Habermann, N., Owen, R. W., Scalbert, A., & Ulrich, C. M. (2013a). Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiology, Biomarkers & Prevention, 22, 2182–2201.CrossRefGoogle Scholar
  58. Lin, X., Sun, R., Zhao, X., Zhu, D., Zhao, X., Gu, Q., Dong, X., et al. (2017). C-myc overexpression drives melanoma metastasis by promoting vasculogenic mimicry via c-myc/snail/Bax signaling. Journal of Molecular Medicine, 95, 53–67.PubMedCrossRefGoogle Scholar
  59. Lionetto, L., Gentile, G., Bellei, E., Capi, M., Sabato, D., Marsibilio, F., et al. (2013). The omics in migraine. Journal of Headache and Pain, 14, 55.PubMedCrossRefGoogle Scholar
  60. Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W. M., et al. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109, 8983–8988.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer And Prostatic Diseases, 9, 230.PubMedCrossRefGoogle Scholar
  62. Ma, H., Hasim, A., Mamtimin, B., Kong, B., Zhang, H.-P., & Sheyhidin, I. (2014). Plasma free amino acid profiling of esophageal cancer using high-performance liquid chromatography spectroscopy. World Journal of Gastroenterology: WJG, 20, 8653–8659.PubMedCrossRefGoogle Scholar
  63. Meier, F., Will, S., Ellwanger, U., Schlagenhauff, B., Schittek, B., Rassner, G., & Garbe, C. (2002). Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. British Journal of Dermatology, 147, 62–70.PubMedCrossRefGoogle Scholar
  64. Mellor, A. L., & Munn, D. H. (1999). Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunology Today, 20, 469–473.PubMedCrossRefGoogle Scholar
  65. Meyer, A. M., Dwyer-Nield, L. D., Hurteau, G. J., Keith, R. L., O’Leary, E., You, M., et al. (2004). Decreased lung tumorigenesis in mice genetically deficient in cytosolic phospholipase A 2. Carcinogenesis, 25, 1517–1524.PubMedCrossRefGoogle Scholar
  66. Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H., Vockley, J., Toledo, F. G., et al. (2010). Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring), 18, 1695–1700.CrossRefGoogle Scholar
  67. Miyagi, Y., Higashiyama, M., Gochi, A., Akaike, M., Ishikawa, T., Miura, T., et al. (2011). Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE, 6, e24143.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mrazek, A. A., & Chao, C. (2014). Surviving Cutaneous melanoma: A clinical review of follow-up practices, surveillance, and management of recurrence. The Surgical clinics of North America, 94, 989–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ng, D. J. Y., Pasikanti, K. K., & Chan, E. C. Y. (2011). Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics, 7, 155–178.CrossRefGoogle Scholar
  70. NIH (2017) Cancer stat facts: Melanoma. National Cancer Institute: Surveillance, Epidemiology & End Results (SEER) Program.Google Scholar
  71. Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S.-W., & Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140, 49–61.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Okamoto, A., Nikaido, T., Ochiai, K., Takakura, S., Saito, M., Aoki, Y., et al. (2005). Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clinical Cancer Research, 11, 6030–6039.PubMedCrossRefGoogle Scholar
  73. Opitz, C. A., Litzenburger, U. M., Sahm, F., Ott, M., Tritschler, I., Trump, S., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 478, 197.PubMedCrossRefGoogle Scholar
  74. Ott, P. A., Hodi, F. S., & Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical Cancer Research, 19, 5300–5309.PubMedCrossRefGoogle Scholar
  75. Otto, A. M. (2016). Warburg effect(s)—A biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer & Metabolism, 4, 5.CrossRefGoogle Scholar
  76. Pan, D., Kim, B., Hu, G., Gupta, D. S., Senpan, A., Yang, X., et al. (2015). A strategy for combating melanoma with oncogenic c-Myc inhibitors and targeted nanotherapy. Nanomedicine (London, England), 10, 241–251.CrossRefGoogle Scholar
  77. Phang, J. M., Donald, S. P., Pandhare, J., & Liu, Y. (2008). The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids, 35, 681–690.PubMedCrossRefGoogle Scholar
  78. Phang, J. M., Liu, W., Hancock, C. N., & Fischer, J. W. (2015). Proline metabolism and cancer: emerging links to glutamine and collagen. Current Opinion in Clinical Nutrition and Metabolic Care, 18, 71–77.PubMedCrossRefGoogle Scholar
  79. Pilotte, L., Larrieu, P., Stroobant, V., Colau, D., Dolušić, E., Frédérick, R., et al. (2012). Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 109, 2497–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Poschl, G., & Seitz, H. K. (2004). Alcohol and cancer. Alcohol Alcohol, 39, 155–165.PubMedCrossRefGoogle Scholar
  81. Prendergast, G. C. (2011). Why tumours eat tryptophan. Nature, 478, 192.PubMedCrossRefGoogle Scholar
  82. Qingyong, M., Zheng, W., Min, Z., Hengtong, H., Junhui, L., Dong, Z., et al. (2010). Targeting the L-arginine-nitric oxide pathway for cancer treatment. Current Pharmaceutical Design, 16, 392–410.CrossRefGoogle Scholar
  83. Qiu, Y., Cai, G., Zhou, B., Li, D., Zhao, A., Xie, G., et al. (2014). A distinct metabolic signature of human colorectal cancer with prognostic potential. Clin Cancer Research, 20, 2136–2146.CrossRefGoogle Scholar
  84. Qiu, Y., Zhou, B., Su, M., Baxter, S., Zheng, X., Zhao, X., Yen, Y., & Jia, W. (2013). Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. International Journal of Molecular Sciences, 14, 8047–8061.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 10, e0124219.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ridgway, N. D. (2013). The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Critical Reviews in Biochemistry and Molecular Biology, 48, 20–38.PubMedCrossRefGoogle Scholar
  87. Rim, J. H., Choi, J. R., & Lee, S.-G. (2012) Metabolomic profile change in type 2 diabetes revealed by commercial metabolomics kit with mass spectrometry, Mass Spectrometry: Applications to the Clinical Lab (MSACL) 2016 US.Google Scholar
  88. Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. New England Journal of Medicine, 372, 30–39.PubMedCrossRefGoogle Scholar
  89. Sandru, A., Panaitescu, E., Voinea, S., Bolovan, M., Stanciu, A., Cinca, S., & Blidaru, A. (2014) Prognostic value of melanoma inhibitory activity protein in localized cutaneous malignant melanoma. Journal of Skin Cancer 2014, 843214.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sasahira, T., Kirita, T., Kurihara, M., Yamamoto, K., Bhawal, U. K., Bosserhoff, A. K., et al. (2010). MIA-dependent angiogenesis and lymphangiogenesis are closely associated with progression, nodal metastasis and poor prognosis in tongue squamous cell carcinoma. European Journal of Cancer, 46, 2285–2294.PubMedCrossRefGoogle Scholar
  91. Schmid-Wendtner, M. H., Baumert, J., Wendtner, C. M., Plewig, G., & Volkenandt, M. (2001). Risk of second primary malignancies in patients with cutaneous melanoma. British Journal of Dermatology, 145, 981–985.PubMedCrossRefGoogle Scholar
  92. Seitz, H. K., Matsuzaki, S., Yokoyama, A., Homann, N., Vakevainen, S., & Wang, X. D. (2001). Alcohol and cancer. Alcoholism: Clinical and Experimental Research, 25, 137S–143S.CrossRefGoogle Scholar
  93. Shah, S. H., Sun, J. L., Stevens, R. D., Bain, J. R., Muehlbauer, M. J., Pieper, K. S., et al. (2012). Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. American Heart Journal, 163, 844–850 e1.PubMedCrossRefGoogle Scholar
  94. Simińska, E., & Koba, M. (2016). Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids, 48, 1339–1345.PubMedCrossRefGoogle Scholar
  95. Soong, S.-J., Harrison, R. A., McCarthy, W. H., Urist, M. M., & Balch, C. M. (1998). Factors affecting survival following local, regional, or distant recurrence from localized melanoma. Journal of Surgical Oncology, 67, 228–233.PubMedCrossRefGoogle Scholar
  96. Sosa, V., Moliné, T., Somoza, R., Paciucci, R., Kondoh, H., & LLeonart, M. E. (2013). Oxidative stress and cancer: An overview. Ageing Research Reviews, 12, 376–390.PubMedCrossRefGoogle Scholar
  97. Szlosarek, P. W. (2014) Arginine deprivation and autophagic cell death in cancer. Proceedings of the National Academy of Sciences 111, 14015–14016.CrossRefGoogle Scholar
  98. Tennant, D. A., Durán, R. V., & Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nature Reviews Cancer, 10, 267.PubMedCrossRefGoogle Scholar
  99. Trotter, S. C., Sroa, N., Winkelmann, R. R., Olencki, T., & Bechtel, M. (2013). A global review of melanoma follow-up guidelines. The Journal of Clinical and Aesthetic Dermatology, 6, 18–26.PubMedPubMedCentralGoogle Scholar
  100. Uyttenhove, C., Pilotte, L., Théate, I., Stroobant, V., Colau, D., Parmentier, N., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 9, 1269.PubMedCrossRefGoogle Scholar
  101. Verykiou, S., Ellis, R. A., & Lovat, P. E. (2014). Established and emerging biomarkers in cutaneous malignant melanoma. Healthcare (Basel), 2, 60–73.CrossRefGoogle Scholar
  102. Voss, R. K., Woods, T. N., Cromwell, K. D., Nelson, K. C., & Cormier, J. N. (2015). Improving outcomes in patients with melanoma: Strategies to ensure an early diagnosis. Patient Related Outcome Measures, 6, 229–242.PubMedPubMedCentralGoogle Scholar
  103. Wang, Q., Beaumont, K. A., Otte, N. J., Font, J., Bailey, C. G., van Geldermalsen, M., et al. (2014). Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 135, 1060–1071.PubMedCrossRefGoogle Scholar
  104. Weinstein, D., Leininger, J., Hamby, C., & Safai, B. (2014). Diagnostic and Prognostic Biomarkers in Melanoma. The Journal of Clinical and Aesthetic Dermatology, 7, 13–24.PubMedPubMedCentralGoogle Scholar
  105. Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X.-Y., Pfeiffer, H. K., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105, 18782–18787.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wishart, D. S. (2010). Computational approaches to metabolomics. Methods in Molecular Biology, 593, 283–313.PubMedCrossRefGoogle Scholar
  107. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3, 1769–1782.PubMedCrossRefGoogle Scholar
  108. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.PubMedCrossRefGoogle Scholar
  109. Wojciech, J., & Szmitkowski, M. (2008). Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clinica Chimica Acta, 395, 1–5.CrossRefGoogle Scholar
  110. Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics, 9, 280–299.PubMedCrossRefGoogle Scholar
  111. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Xing, Y., Chang, G. J., Hu, C.-Y., Askew, R. L., Ross, M. I., Gershenwald, J. E., et al. (2010). Conditional survival estimates improve over time for patients with advanced melanoma. Cancer, 116, 2234–2241.PubMedPubMedCentralGoogle Scholar
  115. Zhang, F., & Du, G. (2012). Dysregulated lipid metabolism in cancer. World Journal of Biological Chemistry, 3, 167–174.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhou, M., Guan, W., Walker, L .D., Mezencev, R., Benigno, B. B., Gray, A., et al. (2010). Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiology Biomarkers & Prevention, 19, 2262–2271.CrossRefGoogle Scholar
  117. Zhou, X., Mao, J., Ai, J., Deng, Y., Roth, M. R., Pound, C., Henegar, J., Welti, R., & Bigler, S. A. (2012). Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS ONE, 7, e48889.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zordoky, B. N., Sung, M. M., Ezekowitz, J., Mandal, R., Han, B., Bjorndahl, T. C., Bouatra, S., Anderson, T., Oudit, G. Y., Wishart, D. S., Dyck, J. R., & Alberta, H. (2015). Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE, 10, e0124844.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. W. L. Bayci
    • 1
  • D. A. Baker
    • 1
    • 4
    Email author
  • A. E. Somerset
    • 1
  • O. Turkoglu
    • 2
  • Z. Hothem
    • 1
  • R. E. Callahan
    • 1
  • R. Mandal
    • 3
  • B. Han
    • 3
  • T. Bjorndahl
    • 3
  • D. Wishart
    • 3
  • R. Bahado-Singh
    • 2
  • S. F. Graham
    • 2
  • R. Keidan
    • 1
  1. 1.Department of General SurgeryBeaumont HealthRoyal OakUSA
  2. 2.Department of Obstetrics and GynecologyBeaumont HealthRoyal OakUSA
  3. 3.Department of Biological and Computing SciencesUniversity of Alberta EdmontonEdmontonCanada
  4. 4.Department of SurgeryBeaumont HealthRoyal OakUSA

Personalised recommendations