Advertisement

Metabolomics

, 14:100 | Cite as

Quantitative metabolomics comparison of traditional blood draws and TAP capillary blood collection

  • Alexis Catala
  • Rachel Culp-Hill
  • Travis Nemkov
  • Angelo D’AlessandroEmail author
Original Article

Abstract

Introduction

Mass spectrometry and computational biology have advanced significantly in the past ten years, bringing the field of metabolomics a step closer to personalized medicine applications. Despite these analytical advancements, collection of blood samples for routine clinical analysis is still performed through traditional blood draws.

Objective

TAP capillary blood collection has been recently introduced for the rapid, painless draw of small volumes of blood (~ 100 μL), though little is known about the comparability of metabolic phenotypes of blood drawn via traditional venipuncture and TAP devices.

Methods

UHPLC-MS-targeted metabolomics analyses were performed on blood drawn traditionally or through TAP devices from 5 healthy volunteers. Absolute quantitation of 45 clinically-relevant metabolites was calculated against stable heavy isotope-labeled internal standards.

Results

Ranges for 39 out of 45 quantified metabolites overlapped between drawing methods. Pyruvate and succinate were over threefold higher in the TAP samples than in traditional blood draws. No significant changes were observed for other carboxylates, glucose or lactate. TAP samples were characterized by increases in reduced glutathione and decreases in urate and cystine, markers of oxidation of purines and cysteine—overall suggesting decreased oxidation during draws. The absolute levels of bile acids and acyl-carnitines, as well as almost all amino acids, perfectly correlated among groups (Spearman r ≥ 0.95).

Conclusion

Though further more extensive studies will be mandatory, this pilot suggests that TAP-derived blood may be a logistically-friendly source of blood for large scale metabolomics studies—especially those addressing amino acids, glycemia and lactatemia as well as bile acids, acyl-carnitine levels.

Keywords

Mass spectrometry Metabolomics Blood draw Personalized medicine 

Notes

Acknowledgements

Research reported in this publication was supported in part by funds from the Boettcher Webb-Waring Biomedical Research Award—Early Career grant (ADA) and the Shared Instrument grant by the National Institute of Health (S10OD021641). We would like to thank Seventh Sense for kindly and gratuitously donatng prototype TAP devices for the sake of this pilot study.

Compliance with ethical standards

Conflict of interest

Though unrelated to the contents of this manuscript, ADA and TN are founders of Omix Technologies Inc and ALTIS Biosciences LLC. ADA is a consultant for New Health Sciences Inc. All the remaining authors have no conflicts of interest to disclose. No economic support was provided by Seventh Sense Biosystems, except for the kind donation of a limited number of prototypes tested in this study.

Supplementary material

11306_2018_1395_MOESM1_ESM.xlsx (149 kb)
Supplementary material 1 (XLSX 148 KB)
11306_2018_1395_MOESM2_ESM.pdf (168 kb)
Supplementary material 2 (PDF 168 KB)
11306_2018_1395_MOESM3_ESM.jpg (340 kb)
Supplementary material 3 (JPG 340 KB)

References

  1. Avignon, A., Radauceanu, A., & Monnier, L. (1997). Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care, 20(12), 1822–1826.CrossRefPubMedGoogle Scholar
  2. Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., et al. (2016). Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics, 12(9), 149.  https://doi.org/10.1007/s11306-016-1094-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blicharz, T. M., Gong, P., Bunner, B. M., Chu, L. L., Leonard, K. M., Wakefield, J. A., et al. (2018). Microneedle-based device for the one-step painless collection of capillary blood samples. Nature Biomedical Engineering, 2(3), 151–157.  https://doi.org/10.1038/s41551-018-0194-1.CrossRefGoogle Scholar
  4. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijević, D., Sundier, S. Y., Robb, E. L., et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431–435.  https://doi.org/10.1038/nature13909.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Crutchfield, C. A., Thomas, S. N., Sokoll, L. J., & Chan, D. W. (2016). Advances in mass spectrometry-based clinical biomarker discovery. Clinical Proteomics.  https://doi.org/10.1186/s12014-015-9102-9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. D’Alessandro, A., Giardina, B., Gevi, F., Timperio, A. M., & Zolla, L. (2012). Clinical metabolomics: The next stage of clinical biochemistry. Blood Transfusion = Trasfusione Del Sangue, 10(Suppl 2), s19–24.  https://doi.org/10.2450/2012.005S.PubMedPubMedCentralCrossRefGoogle Scholar
  7. D’Alessandro, A., Moore, H. B., Moore, E. E., Wither, M., Nemkov, T., Gonzalez, E., et al. (2015). Early hemorrhage triggers metabolic responses that build up during prolonged shock. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 308(12), R1034–R1044.  https://doi.org/10.1152/ajpregu.00030.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  8. D’Alessandro, A., Nemkov, T., Yoshida, T., Bordbar, A., Palsson, B. O., & Hansen, K. C. (2017). Citrate metabolism in red blood cells stored in additive solution-3. Transfusion, 57(2), 325–336.  https://doi.org/10.1111/trf.13892.CrossRefPubMedGoogle Scholar
  9. DʼAlessandro, A., Moore, H. B., Moore, E. E., Reisz, J. A., Wither, M. J., Ghasasbyan, A., et al. (2017). Plasma succinate is a predictor of mortality in critically injured patients. The Journal of Trauma and Acute Care Surgery, 83(3), 491–495.  https://doi.org/10.1097/TA.0000000000001565.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.  https://doi.org/10.1002/mas.20108.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fuhrer, T., Heer, D., Begemann, B., & Zamboni, N. (2011). High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Analytical Chemistry, 83(18), 7074–7080.  https://doi.org/10.1021/ac201267k.CrossRefPubMedGoogle Scholar
  12. Gehrke, S., Reisz, J. A., Nemkov, T., Hansen, K. C., & D’Alessandro, A. (2017). Characterization of rapid extraction protocols for high-throughput metabolomics. Rapid Communications in Mass Spectrometry: RCM, 31(17), 1445–1452.  https://doi.org/10.1002/rcm.7916.CrossRefPubMedGoogle Scholar
  13. Herrero, M., Simó, C., García-Cañas, V., Ibáñez, E., & Cifuentes, A. (2012). Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews, 31(1), 49–69.  https://doi.org/10.1002/mas.20335.CrossRefPubMedGoogle Scholar
  14. Jobard, E., Trédan, O., Postoly, D., André, F., Martin, A.-L., Elena-Herrmann, B., & Boyault, S. (2016). A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies. International Journal of Molecular Sciences.  https://doi.org/10.3390/ijms17122035.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kok, M. G. M., & Fillet, M. (2018). Volumetric absorptive microsampling: Current advances and applications. Journal of Pharmaceutical and Biomedical Analysis, 147, 288–296.  https://doi.org/10.1016/j.jpba.2017.07.029.CrossRefPubMedGoogle Scholar
  16. Krishna, U., Joshi, S. P., & Modh, M. (2009). An evaluation of serial blood lactate measurement as an early predictor of shock and its outcome in patients of trauma or sepsis. Indian Journal of Critical Care Medicine, 13(2), 66–73.  https://doi.org/10.4103/0972-5229.56051.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kurbegov, A. C., Setchell, K. D. R., Haas, J. E., Mierau, G. W., Narkewicz, M., Bancroft, J. D., et al. (2003). Biliary diversion for progressive familial intrahepatic cholestasis: Improved liver morphology and bile acid profile. Gastroenterology, 125(4), 1227–1234.CrossRefPubMedGoogle Scholar
  18. Lana, A., Longo, V., Dalmasso, A., D’Alessandro, A., Bottero, M. T., & Zolla, L. (2015). Omics integrating physical techniques: Aged Piedmontese meat analysis. Food Chemistry, 172, 731–741.  https://doi.org/10.1016/j.foodchem.2014.09.146.CrossRefPubMedGoogle Scholar
  19. Lewis, M. R., Pearce, J. T. M., Spagou, K., Green, M., Dona, A. C., Yuen, A. H. Y., et al. (2016). Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Analytical Chemistry, 88(18), 9004–9013.  https://doi.org/10.1021/acs.analchem.6b01481.CrossRefPubMedGoogle Scholar
  20. López-Bascón, M. A., Priego-Capote, F., Peralbo-Molina, A., Calderón-Santiago, M., & Luque de Castro, M. D. (2016). Influence of the collection tube on metabolomic changes in serum and plasma. Talanta, 150, 681–689.  https://doi.org/10.1016/j.talanta.2015.12.079.CrossRefPubMedGoogle Scholar
  21. Lusczek, E. R., Muratore, S. L., Dubick, M. A., & Beilman, G. J. (2017). Assessment of key plasma metabolites in combat casualties. Journal of Trauma and Acute Care Surgery, 82(2), 309.  https://doi.org/10.1097/TA.0000000000001277.CrossRefPubMedGoogle Scholar
  22. Maddocks, O. D. K., Labuschagne, C. F., Adams, P. D., & Vousden, K. H. (2016). Serine metabolism supports the methionine cycle and DNA/RNA methylation through De Novo ATP synthesis in cancer cells. Molecular Cell, 61(2), 210–221.  https://doi.org/10.1016/j.molcel.2015.12.014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. McCurdy, C. E., Schenk, S., Hetrick, B., Houck, J., Drew, B. G., Kaye, S., et al. (2016). Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight, 1(16), e86612.  https://doi.org/10.1172/jci.insight.86612.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mondanelli, G., Bianchi, R., Pallotta, M. T., Orabona, C., Albini, E., Iacono, A., et al. (2017). A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity, 46(2), 233–244.  https://doi.org/10.1016/j.immuni.2017.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nemkov, T., D’Alessandro, A., & Hansen, K. C. (2015). Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino Acids, 47(11), 2345–2357.  https://doi.org/10.1007/s00726-015-2019-9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nemkov, T., Hansen, K. C., & D’Alessandro, A. (2017). A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Communications in Mass Spectrometry: RCM, 31(8), 663–673.  https://doi.org/10.1002/rcm.7834.CrossRefPubMedGoogle Scholar
  27. Palau-Rodriguez, M., Tulipani, S., Isabel Queipo-Ortuño, M., Urpi-Sarda, M., Tinahones, M., Tinahones, F. J., & Andres-Lacueva, C. (2015). Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2015.01151.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Reisz, J. A., Slaughter, A. L., Culp-Hill, R., Moore, E. E., Silliman, C. C., Fragoso, M., et al. (2017). Red blood cells in hemorrhagic shock: A critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 1(17), 1296–1305.  https://doi.org/10.1182/bloodadvances.2017007187.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Townsend, M. K., Bao, Y., Poole, E. M., Bertrand, K. A., Kraft, P., Wolpin, B. M., et al. (2016). Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiology, Biomarkers & Prevention, 25(5), 823–829.  https://doi.org/10.1158/1055-9965.EPI-15-1206.CrossRefGoogle Scholar
  30. Uppal, K., Walker, D. I., Liu, K., Li, S., Go, Y.-M., & Jones, D. P. (2016). Computational metabolomics: A framework for the million metabolome. Chemical Research in Toxicology, 29(12), 1956–1975.  https://doi.org/10.1021/acs.chemrestox.6b00179.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang, Q., Sun, T., Cao, Y., Gao, P., Dong, J., Fang, Y., et al. (2016). A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. OncoTargets and Therapy, 9, 1389–1398.  https://doi.org/10.2147/OTT.S95862.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Wilson, I. (2011). Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: advantages and pitfalls. Bioanalysis, 3(20), 2255–2257.  https://doi.org/10.4155/bio.11.221.CrossRefPubMedGoogle Scholar
  33. Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., et al. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617.  https://doi.org/10.1093/nar/gkx1089.CrossRefPubMedGoogle Scholar
  34. Yin, P., Lehmann, R., & Xu, G. (2015). Effects of pre-analytical processes on blood samples used in metabolomics studies. Analytical and Bioanalytical Chemistry, 407(17), 4879–4892.  https://doi.org/10.1007/s00216-015-8565-x.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zukunft, S., Sorgenfrei, M., Prehn, C., Möller, G., & Adamski, J. (2013). Targeted metabolomics of dried blood spot extracts. Chromatographia, 76(19–20), 1295–1305.  https://doi.org/10.1007/s10337-013-2429-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexis Catala
    • 1
  • Rachel Culp-Hill
    • 1
  • Travis Nemkov
    • 1
  • Angelo D’Alessandro
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraUSA

Personalised recommendations