Advertisement

Metabolomics

, 14:94 | Cite as

Metabolite and gene expression profiles suggest a putative mechanism through which high dietary carbohydrates reduce the content of hepatic betaine in Megalobrama amblycephala

  • Jia Xu
  • Fan Wang
  • Ivan Jakovlić
  • Wassana Prisingkorn
  • Jun-Tao Li
  • Wei-Min Wang
  • Yu-Hua ZhaoEmail author
Original Article

Abstract

Background

High-carbohydrate diets (HCD) are favoured by the aquaculture industry for economic reasons, but they can produce negative impacts on growth and induce hepatic steatosis. We hypothesised that the mechanism behind this is the reduction of hepatic betaine content.

Objective

We further explored this mechanism by supplementing betaine (1%) to the diet of a farmed fish Megalobrama amblycephala.

Methods

Four diet groups were designed: control (CD, 27.11% carbohydrates), high-carbohydrate (HCD, 36.75% carbohydrates), long-term betaine (LBD, 35.64% carbohydrates) and short-term betaine diet (SBD; 12 weeks HCD + 4 weeks LBD). We analysed growth performance, body composition, liver condition, and expression of genes and profiles of metabolites associated with betaine metabolism.

Results

HCD resulted in poorer growth and liver health (compared to CD), whereas LBD improved these parameters (compared to HCD). HCD induced the expression of genes associated with glucose, serine and cystathionine metabolisms, and (non-significantly, p = .20) a betaine-catabolizing enzyme betaine-homocysteine-methyltransferase; and decreased the content of betaine, methionine, S-adenosylhomocysteine and carnitine. Betaine supplementation (LBD) reversed these patterns, and elevated betaine-homocysteine-methyltransferase, S-adenosylmethionine and S-adenosylhomocysteine (all p ≤ .05).

Conclusion

We hypothesise that HCD reduced the content of hepatic betaine by enhancing the activity of metabolic pathways from glucose to homocysteine, reflected in increased glycolysis, serine metabolism, cystathionine metabolism and homocysteine remethylation. Long-term dietary betaine supplementation improved the negative impacts of HCD, inculding growth parameters, body composition, liver condition, and betaine metabolism. However, betaine supplementation may have caused a temporary disruption in the metabolic homeostasis.

Keywords

Fish Wuchang bream Growth performance Betaine catabolism Liver health 

Notes

Acknowledgements

We would like to thank the members of College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Ministry of Agriculture and Beijing Mass Spectrometry Medical Research Co. Ltd. for technical help.

Author Contributions

The authors’ responsibilities were as follows: YHZ and JTL conceptualized the study; JX and FW conducted research; YHZ and WMW provided the materials; PW, JX and FW collected the data; JX and IJ analyzed and interpreted the data; JX, YHZ and IJ wrote the manuscript; JX had primary responsibility for the final content. All authors read and approved the final manuscript.

Funding

This study was supported by the Natural Science Foundation of China (No. 31401976).

Compliance with ethical standards

Conflict of interest

The authors, Jia Xu, Fan Wang, Ivan Jakovlić, Wassana Prisingkorn, Jun-Tao Li, Wei-Min Wang, and Yu-Hua Zhao, declare that they have no conflict of interest.

Ethical approval

Efforts were made to minimize suffering as much as possible, and all animals were handled and experimental procedures conducted in accordance with the guidelines for the care and use of animals for scientific purposes set by the Ministry of Science and Technology, Beijing, China (No. 398, 2006). The study was approved by the Institutional Animal Care and Use Ethics Committee of Huazhong Agricultural University. The permit number for conducting animal experiments of the Huazhong Agricultural University is SCXK (Hubei) 2015–0019.

Supplementary material

11306_2018_1389_MOESM1_ESM.pdf (262 kb)
Supplementary material 1 (PDF 262 KB)
11306_2018_1389_MOESM2_ESM.pdf (164 kb)
Supplementary material 2 (PDF 164 KB)
11306_2018_1389_MOESM3_ESM.pdf (212 kb)
Supplementary material 3 (PDF 211 KB)
11306_2018_1389_MOESM4_ESM.pdf (2 mb)
Supplementary material 4 (PDF 2050 KB)
11306_2018_1389_MOESM5_ESM.pdf (1.1 mb)
Supplementary material 5 (PDF 1092 KB)
11306_2018_1389_MOESM6_ESM.pdf (6 mb)
Supplementary material 6 (PDF 6193 KB)

References

  1. Adjoumani, J. Y., Wang, K., Zhou, M., Liu, W., & Zhang, D. (2017). Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet. Fish Physiology and Biochemistry, 43, 1733–1745.  https://doi.org/10.1007/s10695-017-0405-9.CrossRefPubMedGoogle Scholar
  2. Allan, G. (1997). Alternative feed ingredients for intensive aquaculture. In Recent advances in animal nutrition in Australia (pp. 98–109). New South Wales, Australia: University of New England, Armidale.Google Scholar
  3. Bachelor, M. A., Lu, Y., & Owens, D. M. (2011). L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. Journal of Dermatological Science, 63, 164–172.  https://doi.org/10.1016/j.jdermsci.2011.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barak, A. J., Beckenhauer, H. C., Mailliard, M. E., Kharbanda, K. K., & Tuma, D. J. (2003). Betaine lowers elevated s-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats. Journal of Nutrition, 133, 2845–2848.CrossRefPubMedGoogle Scholar
  5. Barak, A. J., Beckenhauer, H. C., Matti, J., & Tuma, D. J. (1993). Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration. Alcoholism Clinical & Experimental Research, 17, 552–555.CrossRefGoogle Scholar
  6. Bradshaw, R. A., Brickey, W. W., & Walker, K. W. (1998). N-terminal processing: The methionine aminopeptidase and N alpha-acetyl transferase families. Trends in Biochemical Sciences, 23, 263.CrossRefPubMedGoogle Scholar
  7. Cholewa, J. M., Guimaraes-Ferreira, L., & Zanchi, N. E. (2014). Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids, 46, 1785–1793.  https://doi.org/10.1007/s00726-014-1748-5.CrossRefPubMedGoogle Scholar
  8. Choumenkovitch, S. F., Selhub, J., Bagley, P. J., Maeda, N., Nadeau, M. R., Smith, D. E., et al. (2002). In the cystathionine beta-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. Journal of Nutrition, 132, 2157–2160.CrossRefPubMedGoogle Scholar
  9. Clow, K. A., Treberg, J. R., Brosnan, M. E., & Brosnan, J. T. (2008). Elevated tissue betaine contents in developing rats are due to dietary betaine, not to synthesis. Journal of Nutrition, 138, 1641.CrossRefPubMedGoogle Scholar
  10. Craig, S. A. (2004). Betaine in human nutrition. American Journal of Clinical Nutrition, 80, 539.CrossRefPubMedGoogle Scholar
  11. Day, C. R., & Kempson, S. A. (2016). Betaine chemistry, roles, and potential use in liver disease. Biochimica Et Biophysica Acta, 1860, 1098–1106.CrossRefPubMedGoogle Scholar
  12. Dobrzynski, M., & Bruggeman, F. J. (2009). Elongation dynamics shape bursty transcription and translation. Proceedings of the National Academy of Sciences 106, 2583–2588.CrossRefGoogle Scholar
  13. Ejim, L. J., Blanchard, J. E., Koteva, K. P., Sumerfield, R., Elowe, N. H., Chechetto, J. D., et al. (2007). Inhibitors of bacterial cystathionine beta-lyase: Leads for new antimicrobial agents and probes of enzyme structure and function. Journal of Medicinal Chemistry, 50, 755.CrossRefPubMedGoogle Scholar
  14. Eklund, M., Bauer, E., Wamatu, J., & Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews, 18, 31.CrossRefPubMedGoogle Scholar
  15. El Mesallamy, H. O., El-Demerdash, E., Hammad, L. N., & El Magdoub, H. M. (2010). Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetology & Metabolic Syndrome, 2, 46.  https://doi.org/10.1186/1758-5996-2-46.CrossRefGoogle Scholar
  16. Emmert, J. L., Garrow, T. A., & Baker, D. H. (1996). Hepatic betaine-homocysteine methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine. Journal of Nutrition, 126, 2050–2058.PubMedGoogle Scholar
  17. Espe, M., Andersen, S. M., Holen, E., Ronnestad, I., Veiseth-Kent, E., Zerrahn, J. E., et al. (2014). Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. The British Journal of Nutrition, 112, 1274–1285.  https://doi.org/10.1017/S0007114514002062.CrossRefPubMedGoogle Scholar
  18. Espe, M., Hevrøy, E. M., Liaset, B., Lemme, A., & El-Mowafi, A. (2008). Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture, 274, 132–141.CrossRefGoogle Scholar
  19. Fattahi, S., Hosseini, S. A., & Sudagar, M. (2013). The effects of dietary betaine on the growth performance and carcass synthesis of caspian roach (Rutilus rutiluscaspicus) fingerlings. Scientific Journal of Animal Science, 2, 132–137.Google Scholar
  20. Fernández-Fígares, I., Lachica, M., Martín, A., Nieto, R., González-Valero, L., Rodríguez-López, J. M., et al. (2012). Impact of dietary betaine and conjugated linoleic acid on insulin sensitivity, protein and fat metabolism of obese pigs. Animal, 6, 1058–1067  https://doi.org/10.1017/s1751731111002308.CrossRefPubMedGoogle Scholar
  21. Finkelstein, J. D., & Martin, J. J. (1984). Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosylethionine. Biochemical & Biophysical Research Communications, 118, 14.CrossRefGoogle Scholar
  22. Gao, G., Clare, A. S., Rose, C., & Caldwell, G. S. (2017). Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications. Algal Research, 24, 64–71.  https://doi.org/10.1016/j.algal.2017.03.008.CrossRefGoogle Scholar
  23. Geurden, I., Mennigen, J., Plagnes-Juan, E., Veron, V., Cerezo, T., Mazurais, D., et al. (2014). High or low dietary carbohydrate: Protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. The Journal of Experimental Biology, 217, 3396–3406.  https://doi.org/10.1242/jeb.106062.CrossRefPubMedGoogle Scholar
  24. Hanhineva, K., et al. (2013). Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. Journal of Proteome Research, 12, 3980–3992.CrossRefPubMedGoogle Scholar
  25. Hao, X., Barri, T., Kolehmainen, M., Pekkinen, J., Pihlajamäki, J., Vesterbacka, A., et al. (2016). Immunoassay of S-adenosylmethionine and S-adenosylhomocysteine: The methylation index as a biomarker for disease and health status. BMC Research Notes.  https://doi.org/10.1186/s13104-016-2296-8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hjelmqvist, L., Norin, A., El-Ahmad, M., Griffiths, W., & Jornvall, H. (2003). Distinct but parallel evolutionary patterns between alcohol and aldehyde dehydrogenases: Addition of fish/human betaine aldehyde dehydrogenase divergence. Cellular and Molecular Life Sciences: CMLS 60, 2009–2016.  https://doi.org/10.1007/s00018-003-3287-1.CrossRefGoogle Scholar
  27. Hoorwitz, N., Chialo, P., Reynolds, H., & Helrich, K. (2012). Official methods of analysis association of official analytical chemists. Journal of Pharmaceutical Sciences, 60, 916.Google Scholar
  28. Hortsch, S. K., & Kremling, A. (2018). Characterization of noise in multistable genetic circuits reveals ways to modulate heterogeneity. PLoS One, 13, e0194779.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang, Q. C., Han, X. Y., Xu, Z. R., & Yang, X. Y. (2009). Betaine suppresses carnitine palmitoyltransferase I in skeletal muscle but not in liver of finishing pigs. Livestock Science, 126, 130–135.CrossRefGoogle Scholar
  30. Hwang, S. Y., Sarna, L. K., Siow, Y. L., & Karmin, O. (2013). High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Canadian Journal of Physiology and Pharmacology, 91, 913–919.  https://doi.org/10.1139/cjpp-2013-0106.CrossRefPubMedGoogle Scholar
  31. Jakovlić, I., Liu, H., & Wang, W. M. (2016). Identification, origin and evidence for retained functionality of two IκBα paralogs in Megalobrama amblycephala. Developmental & Comparative Immunology, 62, 89–96.CrossRefGoogle Scholar
  32. James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P., & Caudill, M. A. (2002). Elevation in S-adenosylhomocysteine and DNA hypomethylation: Potential epigenetic mechanism for homocysteine-related pathology. Journal of Nutrition, 132, 2361S.CrossRefPubMedGoogle Scholar
  33. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29–34.Google Scholar
  34. Kharbanda, K. K., Mailliard, M. E., Baldwin, C. R., Beckenhauer, H. C., Sorrell, M. F., Tuma, D. J., et al. (2007). Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. Journal of Hepatology, 46, 314.CrossRefPubMedGoogle Scholar
  35. Kim, Y. C., Kwon, D. Y., & Kim, J. H. (2014). Alterations in the metabolomics of sulfur-containing substances in rat kidney by betaine. Amino Acids, 46, 963–968.  https://doi.org/10.1007/s00726-013-1660-4.CrossRefPubMedGoogle Scholar
  36. Korendyaseva, T. K., Martinov, M. V., Dudchenko, A. M., & Vitvitsky, V. M. (2010). Distribution of methionine between cells and incubation medium in suspension of rat hepatocytes. Amino Acids, 39, 1281–1289.CrossRefPubMedGoogle Scholar
  37. Korman, S. H., Waterham, H. R., Gutman, A., Jakobs, C., & Wanders, R. J. (2005). Novel metabolic and molecular findings in hepatic carnitine palmitoyltransferase I deficiency. Molecular Genetics & Metabolism, 86, 337.CrossRefGoogle Scholar
  38. Leng, Z., Fu, Q., Yang, X., Ding, L., Wen, C., Zhou, Y., et al. (2016). Increased fatty acid beta-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers. Animal Science Journal = Nihon chikusan Gakkaiho, 87, 1005–1010.  https://doi.org/10.1111/asj.12524.PubMedCrossRefGoogle Scholar
  39. Li, J. N., Xu, Q. Y., Wang, C. A., Wang, L. S., Zhao, Z. G., Luo, L., et al. (2016). Effects of dietary glucose and starch levels on the growth, haematological indices and hepatic hexokinase and glucokinase mRNA expression of juvenile mirror carp (Cyprinus carpio). Aquaculture Nutrition, 22, 550–558.  https://doi.org/10.1111/anu.12278.CrossRefGoogle Scholar
  40. Li, X. F., Lu, K. L., Liu, W. B., Jiang, G. Z., & Xu, W. N. (2014). Effects of dietary lipid and carbohydrate and their interaction on growth performance and body composition of juvenile blunt snout bream, Megalobrama amblycephala. The Israeli Journal of Aquaculture = Bamidgeh, 66, 931.Google Scholar
  41. Li, X. F., Wang, Y., Liu, W. B., Jiang, G. Z., & Zhu, J. (2013). Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream, Megalobrama amblycephala. Aquaculture Nutrition, 19, 701–708.  https://doi.org/10.1111/anu.12017.CrossRefGoogle Scholar
  42. Liu, H., Chen, C., Gao, Z., Min, J., Gu, Y., Jian, J., et al. (2017). The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Gigascience, 6, 1.PubMedPubMedCentralGoogle Scholar
  43. Magnusson, M., Wang, T. J., Clish, C., Engström, G., Nilsson, P., Gerszten, R. E., et al. (2015). Dimethylglycine deficiency and the development of diabetes. Diabetes, 64, 3010.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Matthews, R. P., Lorent, K., Manoral-Mobias, R., Huang, Y., Gong, W., Murray, I. V., et al. (2009). TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development, 136, 865–875.  https://doi.org/10.1242/dev.027565.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mcbreairty, L. E., Robinson, J. L., Harding, S. V., Randell, E. W., Brunton, J. A., Bertolo, R. F., et al. (2016). Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets. European Journal of Nutrition, 55, 2423.CrossRefPubMedGoogle Scholar
  46. Melo, J. F. B., Lundstedt, L. M., Inoue., L. A. K., Metón, I., Baanante, I. V., Moraes, G., et al. (2016). Glycolysis and gluconeogenesis in the liver of catfish fed with different concentrations of proteins, lipids and carbohydrates. Arqbrasmedvetzootec, 68, 1251–1258.Google Scholar
  47. New, M. B., & Wijkstroem, U. N. (2002). Use of fishmeal and fish oil in aquafeeds: Further thoughts on the fishmeal trap. Fao Fisheries Circular, 138, 128–130.Google Scholar
  48. Normandes, E. B., Barreto, R. E., Carvalho, R. F., & Delicio, H. C. (2006). Effects of betaine on the growth of the fish piauçu, Leporinus macrocephalus. Brazilian Archives of Biology & Technology, 49, 757–762.CrossRefGoogle Scholar
  49. Olthof, M. R., & Verhoef, P. (2005). Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Current Drug Metabolism, 6, 15.CrossRefPubMedGoogle Scholar
  50. Pajares, M. A., & Perez-Sala, D. (2006). Betaine homocysteine S-methyltransferase: Just a regulator of homocysteine metabolism? Cellular and Molecular Life Sciences: CMLS, 63, 2792–2803.  https://doi.org/10.1007/s00018-006-6249-6.CrossRefPubMedGoogle Scholar
  51. Pasquier, J., Cabau, C., Nguyen, T., Jouanno, E., Severac, D., Braasch, I., et al. (2016). Gene evolution and gene expression after whole genome duplication in fish: The PhyloFish database. BMC Genomics, 17, 368.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pekkinen, J., Olli, K., Huotari, A., Tiihonen, K., Keskirahkonen, P., Lehtonen, M., et al. (2013). Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach. Molecular Nutrition & Food Research, 57, 1959–1968.CrossRefGoogle Scholar
  53. Peters-Wendisch, P., Stolz, M., Etterich, H., Kennerknecht, N., Sahm, H., Eggeling, L., et al. (2005). Metabolic engineering of Corynebacterium glutamicum for L-serine production. Applied and Environmental Microbiology, 71, 7139–7144.  https://doi.org/10.1128/AEM.71.11.7139-7144.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pinedo-Gil, J., Tomas-Vidal, A., Jover-Cerda, M., Tomas-Almenar, C., Sanz-Calvo, M. A., Martin-Diana, A. B., et al. (2017). Red beet and betaine as ingredients in diets of rainbow trout (Oncorhynchus mykiss): Effects on growth performance, nutrient retention and flesh quality. Archives of Animal Nutrition, 71, 486–505.  https://doi.org/10.1080/1745039X.2017.1391503.CrossRefPubMedGoogle Scholar
  55. Prathomya, P., Prisingkorn, W., Jakovlić, I., Deng, F.Y., Zhao, Y. H., & Wang, W. M., (2017). 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala. Metabolomics.  https://doi.org/10.1007/s11306-016-1158-7.CrossRefGoogle Scholar
  56. Prisingkorn, W., Prathomya, P., Jakovlic, I., Liu, H., Zhao, Y. H., & Wang, W. M. (2017). Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics, 18, 856.  https://doi.org/10.1186/s12864-017-4246-9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shikata, T., Iwanaga, S., & Shimeno, S. (2008). Effects of dietary glucose, fructose, and galactose on hepatopancreatic enzyme activities and body composition in carp. Fisheries Science, 60, 613–617.CrossRefGoogle Scholar
  58. Siljanderrasi, H., Peuranen, S., Tiihonen, K., Virtanen, E., Kettunen, H., Simmins, T., et al. (2003). Effect of equi-molar dietary betaine and choline addition on performance, carcass quality and physiological parameters of pigs. Animal Science, 76, 55–62.CrossRefGoogle Scholar
  59. Slow, S., & Garrow, T. A. (2006). Liver choline dehydrogenase and kidney betaine-homocysteine methyltransferase expression are not affected by methionine or choline intake in growing rats. Journal of Nutrition, 136, 2279–2283.CrossRefPubMedGoogle Scholar
  60. Song, Z., Deaciuc, I., Zhou, Z., Song, M., Chen, T., Hill, D., et al. (2007). Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. American Journal of Physiology Gastrointestinal & Liver Physiology, 293, G894.CrossRefGoogle Scholar
  61. Sreckovic, B., Sreckovic, V. D., Soldatovic, I., Colak, E., Sumaracdumanovic, M., Janeski, H., et al. (2017). Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes & Metabolic Syndrome, 11, 179.CrossRefGoogle Scholar
  62. Su, S. Y., Dodson, M. V., Li, X. B., Li, Q. F., Wang, H. W., Xie, Z., et al. (2009). The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14α in Landes goose fatty liver. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154, 308–314.  https://doi.org/10.1016/j.cbpa.2009.05.124.CrossRefGoogle Scholar
  63. Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., et al. (2016). Metabolomics workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Research, 44, D463–D470.CrossRefPubMedGoogle Scholar
  64. Sveier, H., Nordas, H., Berge, G. E., & Lied, E. (2015). Dietary inclusion of crystalline D- and L-methionine: Effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon (Salmon salar L.). Aquaculture Nutrition, 7, 169–181.CrossRefGoogle Scholar
  65. Treberg, J. R., & Driedzic, W. R. (2007). The accumulation and synthesis of betaine in winter skate (Leucoraja ocellata). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 147, 475–483.  https://doi.org/10.1016/j.cbpa.2007.01.028.CrossRefGoogle Scholar
  66. Wang, B. K., Liu, W. Bin, Xu, C., Cao, X. Fei, Zhong, X. Qun, Shi, H., Juan., et al. (2017). Dietary carbohydrate levels and lipid sources modulate the growth performance, fatty acid profiles and intermediary metabolism of blunt snout bream Megalobrama amblycephala in an interactive pattern. Aquaculture, 481, 140–153CrossRefGoogle Scholar
  67. Wang, L., Chen, L., Tan, Y., Wei, J., Chang, Y., Jin, T., et al. (2013). Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids in Health and Disease, 12, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang, Y., Kavran, J. M., Chen, Z., Karukurichi, K. R., Leahy, D. J., & Cole, P. A. (2014). Regulation of S-adenosylhomocysteine hydrolase by lysine acetylation. The Journal of Biological Chemistry, 289, 31361–31372.  https://doi.org/10.1074/jbc.M114.597153.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang, Z., Yao, T., Pini, M., Zhou, Z., Fantuzzi, G., Song, Z., et al. (2010). Betaine improved adipose tissue function in mice fed a high-fat diet: A mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. American Journal of Physiology Gastrointestinal & Liver Physiology, 298, G634.CrossRefGoogle Scholar
  70. Watson, W. H., & Chawla, R. K. (1997). Effect of methionine restriction on hepatic glutathione (GSH) and S-adenosylmethionine (SAM). Faseb Journal, 11, 2116–2116.Google Scholar
  71. Wise, C. K., Cooney, C. A., Ali, S. F., & Poirier, L. A. (1997). Measuring S-adenosylmethionine in whole blood, red blood cells and cultured cells using a fast preparation method and high-performance liquid chromatography. Journal of Chromatography B Biomedical Sciences & Applications, 696, 145–152.CrossRefGoogle Scholar
  72. Xing, J., Kang, L., & Jiang, Y. (2011). Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Molecular Biology Reports, 38, 1975–1981.CrossRefPubMedGoogle Scholar
  73. Xu, L., Huang, D., Hu, Q., Wu, J., Wang, Y., & Feng, J. (2015). Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. The British Journal of Nutrition, 113, 1835–1843.  https://doi.org/10.1017/S0007114515001130.CrossRefPubMedGoogle Scholar
  74. Yu, J., Xiao, F., Guo, Y., Deng, J., Liu, B., Zhang, Q., et al. (2015). Hepatic Phosphoserine aminotransferase 1 regulates insulin sensitivity in mice via tribbles homolog 3. Diabetes, 64, 1591.CrossRefPubMedGoogle Scholar
  75. Yu, S., Olsen, C. E., & Marcussen, J. (1997). Methods for the assay of 1,5-anhydro- d -fructose and α-1,4-glucan lyase. Carbohydrate Research, 305, 73–82.CrossRefGoogle Scholar
  76. Zhou, C., Ge, X., Liu, B., Xie, J., Chen, R., Miao, L., et al. (2017a). Comparative study on the effect of high dietary carbohydrate on the growth performance, body composition, serum physiological responses and hepatic antioxidant abilities in Wuchang bream (Megalobrama amblycephala) and black carp (Mylopharyngodon piceus Ri). Aquaculture Research, 48, 1020–1030.  https://doi.org/10.1111/are.12944.CrossRefGoogle Scholar
  77. Zhou, C., Liu, B., Ge, X., Xie, J., & Xu, P. (2013a). Effect of dietary carbohydrate on the growth performance, immune response, hepatic antioxidant abilities and heat shock protein 70 expression of Wuchang bream, Megalobrama amblycephala. Journal of Applied Ichthyology, 29, 1348–1356.CrossRefGoogle Scholar
  78. Zhou, C. P., Ge, X. P., Liu, B., Xie, J., & Miao, L. H. (2013b). Effect of high dietary carbohydrate on the growth performance and physiological responses of Juvenile Wuchang bream, Megalobrama amblycephala. Asian-Australasian Journal of Animal Sciences, 26, 1598–1608.  https://doi.org/10.5713/ajas.2012.12659.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhou, L. F., Zhao, B. W., Guan, N. N., Wang, W. M., & Gao, Z. X. (2017b). Plasma metabolomics profiling for fish maturation in blunt snout bream. Metabolomics, 13, 40.CrossRefGoogle Scholar
  80. Zhu, X., Song, J., Mar, M. H., Edwards, L. J., & Zeisel, S. H. (2003). Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochemical Journal, 370, 987–993.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of EducationFreshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanPeople’s Republic of China
  2. 2.Bio-Transduction LabWuhanPeople’s Republic of China
  3. 3.Institute of Tropical Bioscience and BiotechnologyHaikouPeople’s Republic of China

Personalised recommendations