Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A systematic review of metabolomics biomarkers for Bisphenol A exposure



Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, a common industrial chemical which has extremely huge production worldwide, is ubiquitous in the environment. Human have high risk of exposing to BPA and the health problems caused by BPA exposure have aroused public concern. However, the biomarkers for BPA exposure are lacking. As a rapidly developing subject, metabolomics has accumulated a large amount of valuable data in various fields. The secondary application of published metabolomics data could be a very promising field for generating novel biomarkers whilst further understanding of toxicity mechanisms.


To summarize the published literature on the use of metabolomics as a tool to study BPA exposure and provide a systematic perspectives of current research on biomarkers screening of BPA exposure.


We conducted a systematic search of MEDLINE (PubMed) up to the end of June 25, 2017 with the key term combinations of ‘metabolomics’, ‘metabonomics’, ‘mass spectrometry’, ‘nuclear magnetic spectroscopy’, ‘metabolic profiling’ and ‘amino acid profile’ combined with ‘BPA exposure’. Additional articles were identified through searching the reference lists from included studies.


This systematic review included 15 articles. Intermediates of glycolysis, Krebs cycle, β oxidation of long chain fatty acids, pentose phosphate pathway, nucleoside metabolism, branched chain amino acid metabolism, aromatic amino acids metabolism, sulfur-containing amino acids metabolism were significantly changed after BPA exposure, suggesting BPA had a highly complex toxic effects on organism which was consistent with existing studies. The biomarkers most consistently associated with BPA exposure were lactate and choline.


Existing metabolomics studies of BPA exposure present heterogeneous findings regarding metabolite profile characteristics. We need more evidence from target metabolomics and epidemiological studies to further examine the reliability of these biomarkers which link to low, environmentally relevant, exposure of BPA in human body.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Acevedo, N., Davis, B., Schaeberle, C. M., Sonnenschein, C., & Soto, A. M. (2013). Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environmental Health Perspectives, 121(9), 1040–1046.

  2. Alonso-Magdalena, P., Quesada, I., & Nadal, Á (2015). Prenatal exposure to BPA and offspring outcomes: The diabesogenic behavior of BPA. Dose Response, 13(2), 1559325815590395.

  3. Ankley, G. T., & Villeneuve, D. L. (2006). The fathead minnow in aquatic toxicology: Past, present and future. Aquatic Toxicology, 78(1), 91–102.

  4. Bauer, S. M., Roy, A., Emo, J., Chapman, T. J., Georas, S. N., & Lawrence, B. P. (2012). The effects of maternal exposure to bisphenol A on allergic lung inflammation into adulthood. Toxicological Sciences, 130(1), 82–93.

  5. Braun, J. M., Muckle, G., Arbuckle, T., Bouchard, M. F., Fraser, W. D., Ouellet, E., et al. (2017). Associations of prenatal urinary bisphenol A concentrations with child behaviors and cognitive abilities. Environmental Health Perspectives, 125(6), 067008.

  6. Breen, A. P., & Murphy, J. A. (1995). Reactions of oxyl radicals with DNA. Free Radical Biology and Medicine, 18(6), 1033–1077.

  7. Cabaton, N. J., Canlet, C., Wadia, P. R., Tremblay-Franco, M., Gautier, R., Molina, J., et al. (2013). Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environmental Health Perspectives, 121(5), 586–593.

  8. Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental Health Perspectives, 116(1), 39–44.

  9. Chen, M., Xu, B., Ji, W., Qiao, S., Hu, N., Hu, Y., et al. (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: A LC-QTOF-based metabolomics study. PLoS ONE, 7(9), e44754.

  10. Chen, M., Zhou, K., Chen, X., Qiao, S., Hu, Y., Xu, B., et al. (2014). Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats. Toxicological Sciences, 138(2), 256–267.

  11. Cheng, S., Rhee, E. P., Larson, M. G., Lewis, G. D., McCabe, E. L., Shen, D., et al. (2012). Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 125(18), 2222–2231.

  12. Cho, S. H., Choi, M. H., Kwon, O. S., Lee, W. Y., & Chung, B. C. (2009). Metabolic significance of bisphenol A-induced oxidative stress in rat urine measured by liquid chromatography-mass spectrometry. Journal of Applied Toxicology, 29(2), 110–117.

  13. Collette, T. W., Skelton, D. M., Davis, J. M., Cavallin, J. E., Jensen, K. M., Kahl, M. D., et al. (2016). Metabolite profiles of repeatedly sampled urine from male fathead minnows (Pimephales promelas) contain unique lipid signatures following exposure to anti-androgens. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 19, 190–198.

  14. Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose Response, 13(3), 1559325815598308.

  15. Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutation Research, 275(3–6), 331–342.

  16. Ekman, D. R., Hartig, P. C., Cardon, M., Skelton, D. M., Teng, Q., Durhan, E. J., et al. (2012). Metabolite profiling and a transcriptional activation assay provide direct evidence of androgen receptor antagonism by bisphenol A in fish. Environmental Science & Technology, 46(17), 9673–9680.

  17. Ekman, D. R., Skelton, D. M., Davis, J. M., Villeneuve, D. L., Cavallin, J. E., Schroeder, A., et al. (2015). Metabolite profiling of fish skin mucus: A novel approach for minimally-invasive environmental exposure monitoring and surveillance. Environmental Science & Technology, 49(5), 3091–3100.

  18. Fic, A., Žegura, B., Dolenc, M. S., Filipič, M., & Peterlin, M. L. (2013). Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells. Archives of Industrial Hygiene and Toxicology, 64(2), 189–200.

  19. Friedrich, N. (2012). Metabolomics in diabetes research. Journal of Endocrinology, 215(1), 29–42.

  20. Hoepner, L. A., Whyatt, R. M., Widen, E. M., Hassoun, A., Oberfield, S. E., Mueller, N. T., et al. (2016). Bisphenol A and adiposity in an inner-city birth cohort. Environmental Health Perspectives, 124(10), 1644–1650.

  21. Hu, W., Dong, T., Wang, L., Guan, Q., Song, L., Chen, D., et al. (2017). Obesity aggravates toxic effect of BPA on spermatogenesis. Environment International, 105, 56–65.

  22. Huang, B., Jiang, C., Luo, J., Cui, Y., Qin, L., & Liu, J. (2014). Maternal exposure to bisphenol A may increase the risks of Parkinson’s disease through down-regulation of fetal IGF-1 expression. Medical Hypotheses, 82(3), 245–249.

  23. Huynh, J., Xiong, G., & Bentleylewis, R. (2014). A systematic review of metabolite profiling in gestational diabetes mellitus. Diabetologia, 57(12), 2453–2464.

  24. Ji, C., Wei, L., Zhao, J., & Wu, H. (2014). Metabolomic analysis revealed that female mussel Mytilus galloprovincialis was sensitive to bisphenol A exposures. Environmental Toxicology and Pharmacology, 37(2), 844–849.

  25. Jordan, J., Zare, A., Jackson, L. J., Habibi, H. R., & Weljie, A. M. (2012). Environmental contaminant mixtures at ambient concentrations invoke a metabolic stress response in goldfish not predicted from exposure to individual compounds alone. Journal of Proteome Research, 11(2), 1133–1143.

  26. Lassen, T. H., Frederiksen, H., Jensen, T. K., Petersen, J. H., Joensen, U. N., Main, K. M., et al. (2014). Urinary bisphenol A levels in young men: Association with reproductive hormones and semen quality. Environmental Health Perspectives, 122(5), 478–484.

  27. Li, D. K., Zhou, Z., Miao, M., He, Y., Wang, J., Ferber, J., et al. (2011). Urine bisphenol-A (BPA) level in relation to semen quality. Fertility and Sterility, 95(2):625–630.

  28. Li, S., Jin, Y., Wang, J., Tang, Z., Xu, S., Wang, T., & Cai, Z. (2016). Urinary profiling of cis-diol-containing metabolites in rats with bisphenol A exposure by liquid chromatography-mass spectrometry and isotope labeling. Analyst, 141(3), 1144–1153.

  29. Lotta, L. A., Scott, R. A., Sharp, S. J., Burgess, S., Luan, J., Tillin, T., et al. (2016). Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: A mendelian randomisation analysis. PLoS Medicine, 13(11), e1002179.

  30. McCormack, S. E., Shaham, O., McCarthy, M. A., Deik, A. A., Wang, T. J., Gerszten, R. E., et al. (2013). Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity, 8(1), 52–61.

  31. Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., & Michałowicz, J. (2017). Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69.

  32. Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326.

  33. Ortmayr, K., Schwaiger, M., Hann, S., & Koellensperger, G. (2015). An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry. Analyst, 140(22), 7687–7695.

  34. Pfeifer, D., Chung, Y. M., & Hu, M. C. (2015). Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: The role of c-Myc. Environmental Health Perspectives, 123(12), 1271–1279.

  35. Potratz, S., Tarnow, P., Jungnickel, H., Baumann, S., von Bergen, M., Tralau, T., & Luch, A. (2017). Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 cells. Chemical Research in Toxicology, 30(4), 883–892.

  36. Poulsen, H. E., Prieme, H., & Loft, S. (1998). Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention, 7(1), 9–16.

  37. Prins, G. S., Ye, S. H., Birch, L., Zhang, X., Cheong, A., Lin, H., et al. (2017). Prostate cancer risk and DNA methylation signatures in aging rats following developmental BPA exposure: A dose-response analysis. Environmental Health Perspectives, 125(7), 077007.

  38. Rahman, M. S., Kwon, W. S., Karmakar, P. C., Yoon, S. J., Ryu, B. Y., & Pang, M. G. (2017). Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environmental Health Perspectives, 125(2), 238–245.

  39. Roberts, L. D., Koulman, A., & Griffin, J. L. (2014). Towards metabolic biomarkers of insulin resistance and type 2 diabetes: Progress from the metabolome. The Lancet Diabetes & Endocrinology, 2(1), 65–75.

  40. Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42, 132–155.

  41. Rosenfeld, C. S., Sieli, P. T., Warzak, D. A., Ellersieck, M. R., Pennington, K. A., & Roberts, R. M. (2013). Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proceedings of the National Academy of Sciences, 110(2), 537–542.

  42. Snijder, C. A., Heederik, D., Pierik, F. H., Hofman, A., Jaddoe, V. W., Koch, H. M., et al. (2013). Fetal growth and prenatal exposure to bisphenol A: The generation R study. Environmental Health Perspectives, 121(3), 393–398.

  43. Soto, A. M., Brisken, C., Schaeberle, C., & Sonnenschein, C. (2013). Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. Journal of Mammary Gland Biology and Neoplasia, 18(2), 199–208.

  44. Sun, H., & Wang, Y. (2016). Branched chain amino acid metabolic reprogramming in heart failure. Biochimica et Biophysica Acta, 1862(12), 2270–2275.

  45. Susiarjo, M., Xin, F., Stefaniak, M., Mesaros, C., Simmons, R. A., & Bartolomei, M. S. (2017). Bile acids and tryptophan metabolism are novel pathways involved in metabolic abnormalities in BPA-exposed pregnant mice and male offspring. Endocrinology, 158(8), 2533–2542.

  46. Van Winkle, L. S., Murphy, S. R., Boetticher, M. V., & VandeVoort, C. A. (2013). Fetal exposure of rhesus macaques to bisphenol a alters cellular development of the conducting airway by changing epithelial secretory product expression. Environmental Health Perspectives, 121(8), 912–918.

  47. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453.

  48. Weinhouse, C., Anderson, O. S., Bergin, I. L., Vandenbergh, D. J., Gyekis, J. P., Dingman, M. A., et al. (2014). Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environmental Health Perspectives, 122(5), 485–491.

  49. Yoon, C., Yoon, D., Cho, J., Kim, S., Lee, H., Choi, H., & Kim, S. (2017). 1H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio). Journal of Environmental Science and Health, Part B, 52(4), 282–289.

  50. Zeng, J., Kuang, H., Hu, C., Shi, X., Yan, M., Xu, L., et al. (2013). Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. Environmental Science & Technology, 47(13), 7457–7465.

  51. Zhang, T., Sun, H., & Kannan, K. (2013). Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from china: Partitioning between blood and urine and maternal and fetal cord blood. Environmental Science & Technology, 47(9), 4686–4694.

Download references


This work was supported by the Applied Basic Research Program of Wuhan Science and Technology Bureau (2016010101010003); and the independent innovation research fund, HUST (2017KFYXJJ069).

Author information

Correspondence to Songfeng Lu or Shunqing Xu.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This review was conducted in accordance with ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Rang, O., Liu, F. et al. A systematic review of metabolomics biomarkers for Bisphenol A exposure. Metabolomics 14, 45 (2018). https://doi.org/10.1007/s11306-018-1342-z

Download citation


  • BPA
  • Metabolomics
  • Biomarkers
  • Environmental exposure
  • Review