Metabolomics

, 14:41 | Cite as

DeltaMS: a tool to track isotopologues in GC- and LC-MS data

  • Tim U. H. Baumeister
  • Nico Ueberschaar
  • Wolfgang Schmidt-Heck
  • J. Frieder Mohr
  • Michael Deicke
  • Thomas Wichard
  • Reinhard Guthke
  • Georg Pohnert
Original Article

Abstract

Introduction

Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing.

Objective

To introduce a software tool for the identification of isotopologues from mass spectrometry data.

Methods

DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) search for isotope signatures with a specific mass shift and intensity ratio in one sample set, (2) analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not, (3) analyze isotope-guided perturbation experiments with a setup described in X13CMS.

Results

To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures.

Conclusion

DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.

Graphical Abstract

Keywords

DeltaMS Computer-aided tool Shiny Stable isotope labeling Isotope signature Metallomics 

Notes

Acknowledgements

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (CRC 1067 “AquaDiva” NU, GP and the CRC 1127 “ChemBioSys”; NU WS-H, JFM, TW, RG, GP), the Hans-Böckler-Stiftung (MD) and the Fonds der Chemischen Industrie (TW). The study was co-financed by the state of Thuringia (2015 FGI 0021) with means of the EU in the framework of the EFRE program. Kathleen Thume for the preparation of DMS for the SPME experiments with the GC-Orbitrap Felix Trottmann and Philipp Traber for initial considerations regarding the data analysis and the graphical user interface. Prof. Christian Hertweck for providing the dataset for case study 2 and Prof. Dr. Christoph Steinbeck for the helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors of this manuscript have no competing interests as defined by Springer; they do not have any other interests that influence the results and discussion of this paper.

Research involving with human and animal participants

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2018_1336_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4797 KB)

Supplementary material 2 (MP4 418,929 KB)

References

  1. Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., et al. (2016). rmarkdown: Dynamic documents for R. https://CRAN.R-project.org/package=rmarkdown. Accessed 2 Feb 2018.
  2. Antoniewicz, M. R. (2013). 13C metabolic flux analysis: Optimal design of isotopic labeling experiments. Current Opinion in Biotechnology, 24(6), 1116–1121.  https://doi.org/10.1016/j.copbio.2013.02.003.CrossRefPubMedGoogle Scholar
  3. Attali, D. (2016). Easily improve the user experience of your shiny apps in seconds. https://CRAN.R-project.org/package=shinyjs. Accessed 2 Feb 2018.
  4. Audi, G., & Wapstra, A. H. (1993). The 1993 atomic mass evaluation. Nuclear Physics A, 565(1), 1–65.  https://doi.org/10.1016/0375-9474(93)90024-R.CrossRefGoogle Scholar
  5. Audi, G., & Wapstra, A. H. (1995). The 1995 update to the atomic mass evaluation. Nuclear Physics A, 595(4), 409–480.  https://doi.org/10.1016/0375-9474(95)00445-9.CrossRefGoogle Scholar
  6. Baars, O., Morel, F. M., & Perlman, D. H. (2014). ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Analytical Chemistry, 86(22), 11298–11305.  https://doi.org/10.1021/ac503000e.CrossRefPubMedGoogle Scholar
  7. Bailey, E. (2015). shinyBS: Twitter bootstrap components for shiny. https://CRAN.R-project.org/package=shinyBS. Accessed 2 Feb 2018.
  8. Banci, L., & Bertini, I. (2013). Metallomics and the cell: Some definitions and general comments. In L. Banci (Ed.), Metallomics and the Cell (pp. 1–13). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218–224.  https://doi.org/10.1093/bioinformatics/btn603.CrossRefPubMedGoogle Scholar
  10. Boiteau, R. M., & Repeta, D. J. (2015). An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics, 7(5), 877–884.  https://doi.org/10.1039/c5mt00005j.CrossRefPubMedGoogle Scholar
  11. Bueschl, C., Kluger, B., Neumann, N. K. N., Doppler, M., Maschietto, V., Thallinger, G. G., et al. (2017). MetExtract II: A software suite for stable isotope-assisted untargeted metabolomics. Analytical Chemistry, 89(17), 9518–9526.  https://doi.org/10.1021/acs.analchem.7b02518.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bueschl, C., Krska, R., Kluger, B., & Schuhmacher, R. (2013). Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry, 405(1), 27–33.  https://doi.org/10.1007/s00216-012-6375-y.CrossRefPubMedGoogle Scholar
  13. Capellades, J., Navarro, M., Samino, S., Garcia-Ramirez, M., Hernandez, C., Simo, R., et al. (2016). geoRge: A computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Analytical Chemistry, 88(1), 621–628.  https://doi.org/10.1021/acs.analchem.5b03628.CrossRefPubMedGoogle Scholar
  14. Castro-Falcón, G., Hahn, D., Reimer, D., & Hughes, C. C. (2016). Thiol probes to detect electrophilic natural products based on their mechanism of action. Chemistry & Biology, 11(8), 2328–2336.  https://doi.org/10.1021/acschembio.5b00924.Google Scholar
  15. Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920.  https://doi.org/10.1038/nbt.2377.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chang, W. (2016). shinythemes: Themes for Shiny. https://CRAN.R-project.org/package=shinythemes. Accessed 2 Feb 2018.
  17. Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). shiny: Web application framework for R. https://CRAN.R-project.org/package=shiny. Accessed 2 Feb 2018.
  18. Chokkathukalam, A., Jankevics, A., Creek, D. J., Achcar, F., Barrett, M. P., & Breitling, R. (2013). mzMatch–ISO: An R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 29(2), 281–283.  https://doi.org/10.1093/bioinformatics/bts674.CrossRefPubMedGoogle Scholar
  19. Chokkathukalam, A., Kim, D.-H., Barrett, M. P., Breitling, R., & Creek, D. J. (2014). Stable isotope-labeling studies in metabolomics: New insights into structure and dynamics of metabolic networks. Bioanalysis, 6(4), 511–524.  https://doi.org/10.4155/bio.13.348.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Conley, C. J., Smith, R., Torgrip, R. J., Taylor, R. M., Tautenhahn, R., & Prince, J. T. (2014). Massifquant: Open-source Kalman filter-based XC-MS isotope trace feature detection. Bioinformatics, 30(18), 2636–2643.  https://doi.org/10.1093/bioinformatics/btu359.CrossRefPubMedGoogle Scholar
  21. Dai, Z., & Locasale, J. W. (2017). Understanding metabolism with flux analysis: From theory to application. Metabolomic Engineering, 43, 94–102.  https://doi.org/10.1016/j.ymben.2016.09.005.CrossRefGoogle Scholar
  22. Deicke, M., Mohr, J. F., Bellenger, J. P., & Wichard, T. (2014). Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands. Analyst, 139(23), 6096–6099.  https://doi.org/10.1039/c4an01461h.CrossRefPubMedGoogle Scholar
  23. Drexler, H. G. (1994). Leukemia cell lines: In vitro models for the study of chronic myeloid leukemia. Leukemia Research, 18(12), 919–927.CrossRefPubMedGoogle Scholar
  24. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130(5), 606–625.  https://doi.org/10.1039/b418288j.CrossRefPubMedGoogle Scholar
  25. Filer, C. N. (1999). Isotopic fractionation of organic compounds in chromatography. Journal of Labelled Compounds and Radiopharmaceuticals, 42(2), 169–197.CrossRefGoogle Scholar
  26. Gribble, G. W. (2015). Biological activity of recently discovered halogenated marine natural products. Marine Drugs, 13(7), 4044–4136.  https://doi.org/10.3390/md13074044.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., & Ehrhardt, T. (2010). The Herbicide saflufenacil (KixorTM) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Science, 58, 1–9.  https://doi.org/10.1614/WS-D-09-00004.1.CrossRefGoogle Scholar
  28. Hegeman, A. D., Schulte, C. F., Cui, Q., Lewis, I. A., Huttlin, E. L., Eghbalnia, H., et al. (2007). Stable isotope assisted assignment of elemental compositions for metabolomics. Analytical Chemistry, 79(18), 6912–6921.  https://doi.org/10.1021/ac070346t.CrossRefPubMedGoogle Scholar
  29. Hiller, K., Wegner, A., Weindl, D., Cordes, T., Metallo, C. M., Kelleher, J. K., et al. (2013). NTFD-a stand-alone application for the non-targeted detection of stable isotope-labeled compounds in GC/MS data. Bioinformatics, 29(9), 1226–1228.  https://doi.org/10.1093/bioinformatics/btt119.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang, X., Chen, Y. J., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014a). X13CMS. Accessed January 30, 2018 from http://pattilab.wustl.edu/software/x13cms/x13cms.php.
  31. Huang, X., Chen, Y. J., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014b). X13CMS: Global tracking of isotopic labels in untargeted metabolomics. Analytical Chemistry, 86(3), 1632–1639.  https://doi.org/10.1021/ac403384n.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.  https://doi.org/10.1021/ac202450g.CrossRefPubMedGoogle Scholar
  33. Kumar, B. (2011). Isotopic signatures. In V. P. Singh, P. Singh & U. K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 669–669). Dordrecht: Springer.CrossRefGoogle Scholar
  34. Levin, Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics, 11(12), 2565–2567.  https://doi.org/10.1002/pmic.201100033.CrossRefPubMedGoogle Scholar
  35. Lisovich, A., & Day, R. (2014). rChoiceDialogs: rChoiceDialogs collection. https://CRAN.R-project.org/package=rChoiceDialogs.
  36. Loos, M. (2016) EnviPick: Peak picking for high resolution mass spectrometry data, R package. Accessed January 30, 2018 from https://CRAN.R-project.org/package=enviPick.
  37. Millard, P., Portais, J. C., & Mendes, P. (2015). Impact of kinetic isotope effects in isotopic studies of metabolic systems. BMC Systems Biology, 9, 64.  https://doi.org/10.1186/s12918-015-0213-8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Murray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609.CrossRefGoogle Scholar
  39. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.  https://doi.org/10.1186/1471-2105-11-395.CrossRefPubMedPubMedCentralGoogle Scholar
  40. R-Core-Team (R Foundation for Statistical Computing). (2017). Accessed January 30, 2018 from https://www.R-project.org/.
  41. Rosman, K. J. R. (1999). Atomic weights of the elements 1997. Pure and Applied Chemistry, 71(8), 1593–1607.CrossRefGoogle Scholar
  42. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793.  https://doi.org/10.1021/ac2000994.CrossRefPubMedGoogle Scholar
  43. Schoenheimer, R., & Rittenberg, D. (1938). The application of isotopes to the study of intermediary metabolism. Science, 87(2254), 221.  https://doi.org/10.1126/science.87.2254.221.CrossRefPubMedGoogle Scholar
  44. Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arppe, A., et al. (2017). DescTools: Tools for descriptive statistics. Accessed January 30, 2018 from https://cran.r-project.org/web/packages/DescTools/index.html.
  45. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006a). Accessed January 30, 2018 from https://bioconductor.org/packages/release/bioc/html/xcms.html.
  46. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006b). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.  https://doi.org/10.1021/ac051437y.CrossRefPubMedGoogle Scholar
  47. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.  https://doi.org/10.1021/ac300698c.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tsednee, M., Huang, Y. C., Chen, Y. R., & Yeh, K. C. (2016). Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Scientific Reports, 6, 26785.  https://doi.org/10.1038/srep26785.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ueberschaar, N., Dahse, H.-M., Bretschneider, T., & Hertweck, C. (2013a). Rational design of an apoptosis-inducing photoreactive DNA intercalator. 52(24), 6185–6189.  https://doi.org/10.1002/ange.201302439.
  50. Ueberschaar, N., Meyer, F., Dahse, H. M., & Hertweck, C. (2016). Bipiperidine conjugates as soluble sugar surrogates in DNA-intercalating antiproliferative polyketides. Chemical Communications, 52(27), 4894–4897.  https://doi.org/10.1039/c6cc00890a.CrossRefPubMedGoogle Scholar
  51. Ueberschaar, N., Xu, Z., Scherlach, K., Metsä-Ketelä, M., Bretschneider, T., Dahse, H.-M., et al. (2013b). Synthetic remodeling of the chartreusin pathway to tune antiproliferative and antibacterial activities. Journal of the American Chemical Society, 135(46), 17408–17416.  https://doi.org/10.1021/ja4080024.CrossRefPubMedGoogle Scholar
  52. Weindl, D., Wegner, A., & Hiller, K. (2016). MIA: Non-targeted mass isotopolome analysis. Bioinformatics, 32(18), 2875–2876.  https://doi.org/10.1093/bioinformatics/btw317.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wichard, T. (2016). Identification of metallophores and organic ligands in the chemosphere of the marine macroalga Ulva (Chlorophyta) and at Land-Sea Interfaces. Frontiers in Marine Science, 3, 131.  https://doi.org/10.3389/fmars.2016.00131.CrossRefGoogle Scholar
  54. Zhang, R., Sioma, C. S., Wang, S., & Regnier, F. E. (2001). Fractionation of mics. Analytical Chemistry, 73(21), 5142–5149.  https://doi.org/10.1021/ac010583a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tim U. H. Baumeister
    • 1
    • 2
  • Nico Ueberschaar
    • 3
  • Wolfgang Schmidt-Heck
    • 4
  • J. Frieder Mohr
    • 1
  • Michael Deicke
    • 1
  • Thomas Wichard
    • 1
  • Reinhard Guthke
    • 4
  • Georg Pohnert
    • 1
    • 2
  1. 1.Department of Bioorganic Analytics, Institute for Inorganic and Analytical ChemistryFriedrich Schiller University Jena,JenaGermany
  2. 2.Max Planck Institute for Chemical EcologyMax Planck Fellow Group on Plankton Community InteractionJenaGermany
  3. 3.Mass Spectrometric Platform, Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaJenaGermany
  4. 4.Department of Systems Biology and Bioinformatics, Hans Knöll Institute (HKI)Leibniz Institute for Natural Product Research and Infection BiologyJenaGermany

Personalised recommendations