Advertisement

Metabolomics

, 14:35 | Cite as

Quantitative analysis of tetrahydrofolate metabolites from clostridium autoethanogenum

  • Renato de Souza Pinto Lemgruber
  • Kaspar Valgepea
  • Mark P. Hodson
  • Ryan Tappel
  • Sean D. Simpson
  • Michael Köpke
  • Lars K. Nielsen
  • Esteban MarcellinEmail author
Short Communication

Abstract

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.

Keywords

Tetrahydrofolates Acetogens Wood–Ljungdahl pathway Gas fermentation Metabolome 

Notes

Acknowledgements

This study was funded by a Grant from the Australian Research Council, partly funded by LanzaTech (ARC LP140100213). Elements of this research utilised equipment and support provided by the QLD node of Metabolomics Australia, an initiative of the Australian Government being conducted as part of the NCRIS National Research Infrastructure for Australia.

Compliance with ethical standards

Conflict of interest

RSPL, KV, MPH, LKN, EM declare that they have no conflict of interest. LanzaTech has interest in commercial gas fermentation with C. autoethanogenum. RT, SDS, MK are employees of LanzaTech.

Research involving human and animals participants

All authors comply with Springer’s ethical policies. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2018_1331_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 19 KB)

References

  1. Aiso, K., Nozaki, T., Shimoda, M., & Kokue, E. (1999). Assay of dihydrofolate reductase activity by monitoring tetrahydrofolate using high-performance liquid chromatography with electrochemical detection. Analytical Biochemistry, 272(2), 143–148.  https://doi.org/10.1006/abio.1999.4174.CrossRefPubMedGoogle Scholar
  2. Drake, H. L., Gößner, A. S., & Daniel, S. L. (2008). Old acetogens, new light. Annals of the New York Academy of Sciences, 1125, 100–128.  https://doi.org/10.1196/annals.1419.016.CrossRefPubMedGoogle Scholar
  3. Drake, H. L., Küsel, K., & Matthies, C. (2006). Acetogenic prokaryotes. In M. Dworkin, E. Rosenberg, K. H. Schleifer & E. Stackebrandt (Eds.), Prokaryotes (ecophysiology and biochemistry) (2nd ed., pp. 354–420). New York: Springer.CrossRefGoogle Scholar
  4. Fuchs, G. (2011). Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life?. Annual Review of Microbiology.  https://doi.org/10.1146/annurev-micro-090110-102801.PubMedGoogle Scholar
  5. Garratt, L. C., Ortori, C. A., Tucker, G. A., Sablitzky, F., Bennett, M. J., & Barrett, D. A. (2005). Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionisation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 19(17), 2390–2398.  https://doi.org/10.1002/rcm.2074.CrossRefPubMedGoogle Scholar
  6. Huang, L., Zhang, J., Hayakawa, T., & Tsuge, H. (2001). Assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring 5-methyltetrahydrofolate and tetrahydrofolate using high-performance liquid chromatography with fluorescence detection. Analytical Biochemistry, 299(2), 253–259.  https://doi.org/10.1006/abio.2001.5421.CrossRefPubMedGoogle Scholar
  7. Lin, M., & Young, C. (2000). Folate levels in cultures of lactic acid bacteria. International Dairy Journal, 10(5–6), 409–413.  https://doi.org/10.1016/S0958-6946(00)00056-X.CrossRefGoogle Scholar
  8. Lu, W., Kwon, Y. K., & Rabinowitz, J. D. (2007). Isotope ratio-based profiling of microbial folates. Journal of the American Society for Mass Spectrometry, 18(5), 898–909.  https://doi.org/10.1016/j.jasms.2007.01.017.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Marcellin, E., Behrendorff, J. B., Nagaraju, S., DeTissera, S., Segovia, S., Palfreyman, R., et al. (2016). Low carbon fuels and commodity chemicals from waste gases—Systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 18, 3020–3028.  https://doi.org/10.1039/C5GC02708J.CrossRefGoogle Scholar
  10. Müller, V. (2003). Energy conservation in acetogenic bacteria. Applied and Environmental Microbiology, 69(11), 6345–6353.  https://doi.org/10.1128/AEM.69.11.6345.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta, 1784(12), 1873–1898.  https://doi.org/10.1016/j.bbapap.2008.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Russell, M. J., & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29(7), 358–363.  https://doi.org/10.1016/j.tibs.2004.05.007.CrossRefPubMedGoogle Scholar
  13. Schuchmann, K., & Müller, V. (2014). Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nature Reviews Microbiology, 12(12), 809–821.  https://doi.org/10.1038/nrmicro3365.CrossRefPubMedGoogle Scholar
  14. Valgepea, K., de Souza Pinto Lemgruber, R., Meaghan, K., Palfreyman, R. W., Abdalla, T., Heijstra, B. D., et al. (2017). Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Systems, 4, 505–515.  https://doi.org/10.1016/j.cels.2017.04.008.CrossRefPubMedGoogle Scholar
  15. Wilson, S. D., & Horne, D. W. (1983). Evaluation of ascorbic acid in protecting labile folic acid derivatives. Proceedings of the National Academy of Sciences of the United States of America, 80, 6500–6504.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Renato de Souza Pinto Lemgruber
    • 1
  • Kaspar Valgepea
    • 1
  • Mark P. Hodson
    • 1
    • 2
  • Ryan Tappel
    • 3
  • Sean D. Simpson
    • 3
  • Michael Köpke
    • 3
  • Lars K. Nielsen
    • 1
  • Esteban Marcellin
    • 1
    • 2
    Email author
  1. 1.Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneAustralia
  2. 2.Metabolomics Australia, AIBNThe University of QueenslandBrisbaneAustralia
  3. 3.LanzaTech Inc.SkokieUSA

Personalised recommendations