, 14:34 | Cite as

Nutrimetabolomics: integrating metabolomics in nutrition to disentangle intake of animal-based foods

  • Hanne Christine Bertram
  • Louise Margrethe Arildsen Jakobsen
Original Article
Part of the following topical collections:
  1. Feeding a healthier world: metabolomics for food and nutrition


Food intake and metabolization of foods is a complex and multi-facetted process that encompasses the introduction of new metabolite compounds in our body, initiation or alterations in endogenous metabolic processes and biochemical pathways, and likely also involving the activity of the gut microbial community that we host. The explorative nature of metabolomics makes it a superior tool for examining the whole response to food intake in a more thorough way and has led to the introduction of the term nutrimetabolomics. Protein derived from animal sources constitutes an important part of our diet, and there is therefore an interest in understanding how these animal-derived dietary sources influence us metabolically. This review aims to illuminate how the introduction of nutrimetabolomics has contributed to gain novel insight into metabolic and nutritional aspects related to intake of animal-based foods.


Animal protein Endogenous metabolism Meat consumption Milk protein Foodomics Dietary biomarkers Food biomarkers 


Compliance with ethical standards

Conflict of interest

Author Hanne Christine Bertram has received financial support for research activities from Arla Foods amba, the Danish Dairy Research Foundation, and Arla Food for Health, which is as a consortium between Arla Foods amba, Arla Foods Ingredients Group P/S, Aarhus University and University of Copenhagen. Author Louise M.A. Jakobsen has received financial support for research activities from Arla Foods amba.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abd El-Salam, M. H., & El-Shibiny, S. (2017). Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science & Nutrion, 57(6), 1119–1132.CrossRefGoogle Scholar
  2. Alexander, D. D., Bylsma, L. C., Vargas, A. J., Cohen, S. S., Doucette, A., Mohamed, M., et al. (2016). Dairy consumption and CVD: A systematic review and meta-analysis. British Journal of Nutrition, 115(4), 737–750.CrossRefPubMedGoogle Scholar
  3. Alexander, D. D., Weed, D. L., Miller, P. E., & Mohamed, M. A. (2015). Red meat and colorectal cancer: A quantitative update on the state of the epidemiologic science. Journal of the American College of Nutrition, 34, 521–543.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aon, M. A., & Cortassa, S. (2015). Systems biology of the fluxome. Processes, 3, 607–618.CrossRefGoogle Scholar
  5. Artaud-Wild, S. M., Connor, S. L., Sexton, G., & Connor, W. E. (1993). Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland—A paradox. Circulation, 88(6), 2771–2779.CrossRefPubMedGoogle Scholar
  6. Aune, D., Ursin, G., & Veierod, M. B. (2009). Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia, 52, 2277–2287.CrossRefPubMedGoogle Scholar
  7. Bertram, H. C., Malmendal, A., Petersen, B. O., Madsen, J. C., Pedersen, H., Nielsen, N. C., et al. (2007). Effect of magnetic field strength on NMR-based metabonomic human urine data—A comparative study of 250, 400, 500 and 800 MHz. Analytical Chemistry, 79, 7110–7115.CrossRefPubMedGoogle Scholar
  8. Biong, A. S., Muller, H., Seljeflot, I., Veierod, M. B., & Pedersen, J. I. (2004). A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine. British Journal of Nutrition, 92(5), 791–797.CrossRefPubMedGoogle Scholar
  9. Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P. M., Fischer, A. R. H., van Boekel, M. A. J. S., et al. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science and Technology, 29, 62–73.CrossRefGoogle Scholar
  10. Bu, G., Luo, Y. K., Chen, F. S., Liu, K. L., & Zhu, T. W. (2013). Milk processing as a tool to reduce cow’s milk allergenicity: A mini-review. Dairy Science & Technology, 93(3), 211–223.CrossRefGoogle Scholar
  11. Burton-Freeman, B. (2010). Postprandial metabolic events and fruitderived phenolics: A review of the science. British Journal of Nutrition, 104(S3), S1–S14.CrossRefPubMedGoogle Scholar
  12. Butler, L. E., & Dauterman, W. C. (1988). The effect of dietary protein levels n xenobiotic biotransformations in F344 male rats. Toxicology and Applied Pharmacology, 95, 301–310.CrossRefPubMedGoogle Scholar
  13. Chen, G.-C., Wang, Y., Tong, X., Szeto, I. M. Y., Smit, G., Li, Z. N., & Qin, L. Q. (2017). Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. European Journal of Nutrition, 56, 2565–2575.CrossRefPubMedGoogle Scholar
  14. Cheung, W., Keski-Rahkonen, P., Assi, N., Ferrari, P., Freisling, H., Rinaldi, S., et al. (2017). A metabolomic study of biomarkers of meat and fish intake. American Journal of Clinical Nutrition, 105, 600–608.CrossRefPubMedGoogle Scholar
  15. Cho, C. E., Taesuwan, S., Malysheva, O. V., Bender, E., Tulchinsky, N. F., Yan, J., et al. (2017). Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition & Food Research. Scholar
  16. Clausen, M. R., Zhang, X., Yde, C. C., Ditlev, D. B., Lillefosse, H. H., Madsen, L., et al. (2015). Intake of hydrolyzed casein is associated with reduced body fat accretion and enhanced phase II metabolism in obesity prone C57BL/6J mice. PLOS One. Scholar
  17. Dallas, D. C., Sanctuary, M. R., Qu, Y., Khajavi, S. H., Van Zandt, A. E., Dyandra, M., et al. (2017). Personalizing protein nourishment. Critical Reviews in Food Science and Nutrition, 57, 3313–3331.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.CrossRefPubMedGoogle Scholar
  19. Eckel, R. H., Jakicic, J. M., Ard, J. D., de Jesus, J. M., Houston Miller, N., Hubbard, V. S., et al. (2014). 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of The American College of Cardiology, 63, 2960–2984.CrossRefPubMedGoogle Scholar
  20. Elmadfa, I., & Meyer, A. L. (2017). Animal proteins as important contributors to a healthy human diet. Annual Review of Animal Biosciences, 5, 111–131.CrossRefPubMedGoogle Scholar
  21. Feeney, E. L., O’Sullivan, A., Nugent, A. P., McNulty, B., Walton, J., Flynn, A., & Gibney, E. R. (2017). Patterns of dairy food intake, body composition and markers of metabolic health in Ireland: Results from the National Adult Nutrition Survey. Nutrition & Diabetes, 7, e243. Scholar
  22. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.CrossRefPubMedGoogle Scholar
  23. Frestedt, J. L., Zenk, J. L., Kuskowski, M. A., Ward, L. S., & Bastian, E. D. (2008). A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: A randomized human clinical study. Nutrition & Metabolism. Scholar
  24. Givens, I. (2017). Saturated fats, dairy foods and health: A curious paradox? Nutrition Bulletin, 42, 274–282.CrossRefGoogle Scholar
  25. Hindmarch, J. P., Awati, A., Edwards, P. J. B., & Moughan, P. (2012). NMR-based metabolomics detection of differences in the metabolism of hydrolysed versus intact protein of similar amino acid profile. Journal of the Science of Food and Agriculture, 92, 2013–2016.CrossRefGoogle Scholar
  26. Jakobsen, L. M. A., Yde, C. C., Van Hecke, T., Jessen, R., Young, J. F., De Smet, S., & Bertram, H. C. (2017). Impact of red meat consumption on the metabolome of rats. Molecular Nutrition & Food Research. Scholar
  27. Khamis, M. M., Adamko, D. J., & El-Aneed, A. (2017). Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrometry Reviews, 36(2), 115–134. Scholar
  28. Koeth, R. A., Wang, Z., Levison, B. S., Koeth, R. A., et al. (2013). Intestinal microbiata metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576–585.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Larsson, S. C., & Wolk, A. (2006). Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. International Journal of Cancer, 119(11), 2657–2664.CrossRefPubMedGoogle Scholar
  30. Lee, K. W., & Cho, W. (2017). The consumption of dairy products is associated with reduced risks of obesity and metabolic syndrome in Korean women but not in men. Nutrients. Scholar
  31. Lillefosse, H., Clausen, M. R., Yde, C. C., Ditlev, D., Zhang, X., Du, Z.-Y., et al. (2014). Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: An underlying mechanism to reduce lipid accretion by whey protein ingestion? Journal of Proteome Research, 13, 2560–2570.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lillefosse, H. H., Tastesen, H. S., Du, Z.-Y., Ditlev, D. B., Thorsen, F. A., Madsen, L., et al. (2013). Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. Journal of Nutrition, 143, 1367–1375.CrossRefPubMedGoogle Scholar
  33. Manninen, A. H. (2009). Protein hydrolysates in sports nutrition. Nutrition & Metabolism. Scholar
  34. Marshall, D. D., & Powers, R. (2017). Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in Nuclear Magnetic Resonance Spectroscopy, 100, 1–16. Scholar
  35. McAllan, L., Keane, D., Schellekens, H., Roche, H. M., Korpela, R., Cryan, J. F., & Nilaweera, K. N. (2013). Whey protein isolate counteracts the effects of a high-fat diet on energy intake and hypothalamic and adipose tissue expression of energy balance-related genes. British Journal of Nutrition, 110, 2114–2126.CrossRefPubMedGoogle Scholar
  36. McGrogor, R. A., & Poppitt, S. D. (2013). Milk protein for improved metabolic health: A review of the evidence. Nutrition & Metabolism, 10, 46.CrossRefGoogle Scholar
  37. Micha, R., Michas, G., & Mozaffarian, D. (2012). Unprocessed and processed meat and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Current Atherosclerosis Reports, 14, 515–524.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mirmiran, P., Esmaillzadeh, A., & Azizi, F. (2005). Dairy consumption and body mass index: An inverse relationship. International Journal of Obesity, 29, 115–121.CrossRefPubMedGoogle Scholar
  39. Münger, L. H., Trimigno, A., Picone, G., Freiburghaus, C., Pimentel, G., Burton, K. J., et al. (2017). Identification of urinary food intake biomarkers for milk, cheese, and soy-based drink by untargeted GC-MS and NMR in healthy humans. Journal of Proteome Research. Scholar
  40. Nestel, P. J., Chronopulos, A., & Cehun, M. (2005). Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects. European Journal of Clinical Nutrition, 59(9), 1059–1063.CrossRefPubMedGoogle Scholar
  41. O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2017). Total red meat intake of >0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systematically searched meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 105, 57–69.CrossRefPubMedGoogle Scholar
  42. Pan, A., Sun, Q., Bernstein, A. M., Manson, J. A. E., Willett, W. C., et al. (2013). Changes in red meat consumption and subsequent risk of type 2 diabetes: Three cohorts of US men and women. JAMA Internal Medicine, 173, 1328–1335.CrossRefPubMedGoogle Scholar
  43. Peiretti, P. G., Medana, C., Visentin, S., Giancotti, V., Zunino, V., & Meineri, G. (2011). Determination of carnosine, anserine, homocarnosine, pentosidine anf thiobarbituric acid reactive substances contents in meat from different animal species. Food Chemistry, 126, 1939–1947.CrossRefPubMedGoogle Scholar
  44. Perk, J., De Backer, G., Gohlke, H., Graham, I., Reiner, Z., Verschuren, M., et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Heart Journal, 33, 1635–1701.CrossRefPubMedGoogle Scholar
  45. Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLOS One, 6(2), e16957.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rohrmann, S., & Linseisen, J. (2016). Processed meat: The real villain? Proceedings of The Nutrition Society, 75, 233–241.CrossRefPubMedGoogle Scholar
  47. Rohrmann, S., Overvad, K., Bueno-de-Mesquita, H. B., Jabosen, M. U., Egebjerg, R., Tjønneland, A., et al. (2013). Meat consumption and mortality—Results from the European prospective investigation into cancer and nutrition. BMC Medicine, 11, article no. 63.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rombouts, C., Hemeryck, L. Y., Van Hecke, T., De Smet, T., De Vos, W. H., & Vanhaecke, L. (2017). Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites. Scientific Reports, 7, 42514.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ross, A. B., Svelander, C., Undeland, I., Pinto, R., & Sandberg, A.-S. (2015). Herring and beef meals lead to differences in plasma 2-aminoadipic acid, β-alanine, 4-hydroxyproline, cetoleic acid, and docosahexaenoic acid concentrations in overweight men. Journal of Nutrition, 145, 2456–2463.CrossRefPubMedGoogle Scholar
  50. Schmedes, M. S., Aadland, E. K., Sundekilde, U. K., Jacques, H., Lavigne, C., Graff, I. E., et al. (2016). Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study. Molecular Nutrition & Food Research, 60, 1661–1672. Scholar
  51. Schoenfeld, P., & Wojtczak, L. (2016). Short and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943–954.CrossRefGoogle Scholar
  52. Shi, J., Tauriainen, E., Martonen, E., Finckenberg, P., Ahlroos-Lehmus, A., Tuomainen, A., et al. (2011). Whey protein isolate protects against diet-induced obesity and fatty liver formation. International Dairy Journal, 21(8), 513–522.CrossRefGoogle Scholar
  53. Stanstrup, J., Rasmussen, J. E., Ritz, C., Holmer-Jensen, J., Hermansen, K., & Dragsted, L. O. (2014b). Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics. Metabolomics, 10, 719–736.CrossRefGoogle Scholar
  54. Stanstrup, J., Schou, S. S., Holmer-Jensen, J., Hermansen, K., & Dragsted, L. O. (2014a). Whey protein delays gastric emptying and suppress plasma fatty acids and their metabolites compared to casein, gluten, and fish protein. Journal of Proteome Research, 13, 2396–2408.CrossRefPubMedGoogle Scholar
  55. Tholstrup, T., Hoy, C. E., Andersen, L. N., Christensen, R. D. K., & Sandstrom, B. (2004). Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? The Journal of the American College of Nutrition, 23, 169–176.CrossRefPubMedGoogle Scholar
  56. Thorning, T. K., Bertram, H. C., Bonjour, J.-P., de Groot, L., Dupont, D., Feeney, E., et al. (2017). Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. American Journal of Clinical Nutrition, 105, 1033–1045.CrossRefPubMedGoogle Scholar
  57. Tranberg, B., Hellgren, L. I., Lykkesfeldt, J., Sejrsen, K., Jeamet, A., Rune, I., et al. (2013). Whey protein reduces early life weight gain in mice fed a high-fat diet. PLOS One, 8(8), e71439.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ussher, J. R., Lopaschuk, G. D., & Arduini, A. (2013). Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis, 231, 456–461.CrossRefPubMedGoogle Scholar
  59. Vaitheesvaran, B., Xu, J., Yee, J., Lu, Q.-Y., Go, V. L., Xiao, G. G., & Lee, W.-N. (2015). The Warburg effect: A balance of flux analysis. Metabolomics, 11, 787–796.CrossRefPubMedGoogle Scholar
  60. van Duynhoven, J. P. M., & Jacobs, D. M. (2016). Assessment of dietary exposure and effect in humans: The role of NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 96, 58–72. Scholar
  61. Wang, W., Wu, Y., & Zhang, D. (2016). Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Annals of Epidemiology, 26, 870–882.CrossRefPubMedGoogle Scholar
  62. Wang, Y., & Beydoun, M. A. (2009). Meat consumption is associated with obesity and central obesity among US adults. International Journal of Obesity, 35, 1104–1113.Google Scholar
  63. Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Woodall, G. M., Dauterman, W. C., & DeMarini, D. M. (1996). Effect of dietary casein levels on activation of promutagens in the spiral Salmonella mutagenicity assay. II. Studies with induced rat liver S9. Mutation Research, 360, 127–143.CrossRefPubMedGoogle Scholar
  65. Woting, A., & Blaut, M. (2016). The intestinal microbiota in metabolic disease. Nutrients, 8(4), article no. 202.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yde, C. C., Clausen, M. R., Ditlev, D. B., Lillefosse, H., Madsen, L., Kristiansen, K., et al. (2014). Multi-block PCA and multi-compartmental study of the metabolic responses to intake of hydrolysed versus intact casein in C57BL/6J mice by NMR-based metabolomics. Metabolomics, 10, 938–949.CrossRefGoogle Scholar
  67. Yin, X., Gibbons, H., Rundle, M., Frost, G., McNulty, B. A., Nugent, A. P., et al. (2017). Estimation of chicken intake by adults using metabolomics-derived markers. Journal of Nutrition, 147, 1850–1857.CrossRefGoogle Scholar
  68. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. Analyst, 137(2), 293–300. Scholar
  69. Zheng, H., Yde, C. C., Clausen, M. R., Kristensen, M., Lorenzen, J., Astrup, A., & Bertram, H. C. (2015). Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. Journal of Agricultural and Food Chemistry, 63, 2830–2839.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food ScienceAarhus UniversityAarslevDenmark

Personalised recommendations