Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Overexpression of AtWRKY50 is correlated with enhanced production of sinapic derivatives in Arabidopsis



WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.


We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.


The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.


The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-d-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.


Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-d-glucose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrick, L., Maddox, D., Ahl- Goy, P., Luntz, T., Ward, E., & Ryals, J. A. (1993). Increased tolerance to two Oomycete pathogens in transgenic tobacco expressing pathogenesis related protein 1a. Proceedings of the National Academy of Science of the United States of America, 90, 7327–7331.

  2. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., & Sheen, J. (2002). MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.

  3. Augustijn, D., Roy, U., van Schadewijk, R., de Groot, H. J. M., & Alia, A. (2016). Metabolic profiling of intact Arabidopsis thaliana leaves during circadian cycle using 1H high resolution magic angle spinning NMR. Plos ONE.

  4. Bakshi, M., & Oelmuller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior, 9, e27700.

  5. Berrueta, L. A., Alonso-Salces, R. M., & Heberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158, 196–214.

  6. Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S. (2011). Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Molecular Biology, 77, 355–370.

  7. Chappel, C. C. S., Vogt, T., Ellis, B. E., & Somerville, C. R. (1992). An Arabidopsis mutant defective in general phenylpropanoid pathway. The Plant Cell, 4, 1413–1424.

  8. Chen, C., & Chen, Z. (2002). Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 129, 706–716.

  9. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

  10. Demkura, P. V., & Ballaré, C. L. (2012). UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Molecular Plant, 5, 642–652.

  11. Dong, J., Chen, C., & Chen, Z. (2003). Expression profile of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51, 21–37.

  12. Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Scince, 5, 199–206.

  13. Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10, 366–371.

  14. Fontaine, J.-X., Molinie, R., Terce-Laforgue, T., Cailleu, D., Hirel, B., Dubois, F., & Mesnard, F. (2010). Use of 1H-NMR metabolomics to precise the function of the third glutamate dehydrogenase gene in Arabidopsis thaliana. Comptes Rendus Chimie, 13, 453–458.

  15. Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839–863.

  16. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

  17. Gou, J. Y., Yu, X. H., & Liu, C. J. (2009). A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 106, 18855–18860.

  18. Guillaumie, S., Mzid, R., Méchin, V., Léon, C., Hichri, I., Destrac-Irvine, A., Trossat-Magnin, C., Delrot, S., & Lauvergeat, V. (2010). The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Molecular Biology, 72, 215–234.

  19. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., & Saito, K. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS, 101, 10205–10210.

  20. Houshyani, B., Kabouw, P., Muth, D., de Vos, R. C. H., Bino, R. J., & Bouwmeester, H. J. (2012). Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics, 8, S131-S145.

  21. Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., & Zimmermann, P. (2008). Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics, Article ID 420747.

  22. Hura, T., Hura, K., Ostrowska, A., Grzesiak, M., & Dziurka, K. (2013). The cell wall-bound phenolics as a biochemical indicator of soil drought resistance in winter triticale. Plant Soil and Environment, 59, 189–195.

  23. John, P. M., Van, D., & Doris, M. J. (2016). Assessment of dietary exposure and effect in humans: The role of NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 96, 58–72.

  24. Journot-Catalino, N., Somssich, I. E., Roby, D., & Kroj, T. (2006). The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. The Plant Cell, 18, 3289–3302.

  25. Kage, U., Yogendra, K. N., & Kushalappa, A. C. (2017). TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Scientific Reports, Article number 42596.

  26. Kikuchi, J., Shinozaki, K., & Hirayama, T. (2004). Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiology, 45, 1099–1104.

  27. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2011). NMR-based plant metabolomics: Where do we stand, where do we go? Trends in Biotechnology, 29, 267–275.

  28. Kim, K. C., Fan, B., & Chen, Z. (2006a). Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiology, 142, 1180–1192.

  29. Kim, Y. J., Kim, D. G., Lee, S. H., & Lee, I. (2006). Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata. Biochimica et Biophysica Acta, 1760, 182–190.

  30. König, S., Feussner, K., Kaever, A., Landesfeind, M., Thurow, C., Karlovsky, P., Gatz, C., Polle, A., & Feussner, I. (2014). Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytologist, 202, 823–837.

  31. Landry, L. G., Chapple, C. C., & Last, R. L. (1995). Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology, 109, 1159–1166.

  32. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., & Ward, E. (1998). Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant Journal, 16, 223–233.

  33. Li, J., Brader, G., Kariola, T., & Palva, E. T. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. Plant Journal, 46, 477–491.

  34. Lima, M. R. M., Felgueiras, M. L., & Gracxa, G. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61, 4033–4042.

  35. Linthorst, H. J. M., Meuwissen, R. L. J., Kauffman, S., & Bol, J. F. (1989). Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. The Plant Cell, 1, 285–291.

  36. Malamy, J., Carr, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 16, 1002–1004.

  37. Masson, J., & Paszkowski, J. (1992). The culture response of Arabidopsis thaliana protoplasts is determined by the growth conditions of donor plants. Plant Journal, 2, 829–833.

  38. Memelink, J., Swords, K. M. M., Staehelin, L. A., & Hoge, J. H. C. (1994). Southern, Northern and Western blot analysis. In S. B. Gelvin, R. A. Schilperoot & D.P.S verma (Eds.), Plant molecular biology manual (pp. F1–F23). Dordrecht: Kluwer academic Publishers.

  39. Naoumkina, M. A., He, X., & Dixon, R. A. (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8, 132–146.

  40. Niderman, T., Genetet, I., Bruyère, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B., & Mosinger, E. (1995). Pathogenesis-related PR-1 proteins are antifungal: Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108, 17–27.

  41. Pape, S., Thurow, C., & Gatz, C. (2010). The Arabidopsis PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1. Plant Physiology, 154, 1805–1818.

  42. Piofczyk, T., Jeena, G., & Pecinka, A. (2015). Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. Plant Physiology and Biocheistry, 93, 34–43.

  43. Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescense and pathogen defense. Genes and Development, 16, 1139–1149.

  44. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

  45. Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review in Plant Biology, 61, 463–489.

  46. Sheahan, J. J. (1996). Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 83, 679–686.

  47. Tenenboim, H., & Brotman, Y. (2016). Omic relief for the biotically stressed: Metabolomics of plant biotic interactions. Trends in Plant Science, 21, 781–791.

  48. Tian, H., Lam, S. M., & Shu, G. (2016). Metabolomics, a powerful tool for agricultural research. International Journal of Molecular Sciences.

  49. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J.-I., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., Kitayama, M., Noji, M., Yamazaki, M., & Saito, K. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal, 42, 218–235.

  50. Tronchet, M., Balagué, C., Kroj, T., Jouanin, L., & Roby, D. (2010). Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology, 11, 83–92.

  51. Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E., & Ryals, J. (1993). Regulation of pathogenesis-related protein-1a gene expression in tobacco. The Plant Cell, 5, 159–169.

  52. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E., & Ryals, J. (1992). Acquired resistance in Arabidopsis. The Plant Cell, 4, 645–656.

  53. Van Verk, M. C., Pappaioannou, D., Neeleman, L., Bol, J. F., & Linthorst, H. J. M. (2008). A novel WRKY transcription factor is required for induction of PR-1A gene expression by salicylic acid and bacterial elicitors. Plant Physiology, 146, 1983–1995.

  54. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153, 895–90510.

  55. Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.

  56. Wang, D., Amornsiripanitch, N., & Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens, 2, e123.

  57. Wang, H., Avci, U., Nakashima, J., Hahn, M. G., Chen, F., & Dixon, R. A. (2010). Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22338–22343.

  58. Wang, S., Uddin, M. I., Tanaka, K., Yin, L., Shi, Z., Qi, Y., et al. (2014). Maintenance of chloroplast structure and function by overexpression of the rice monogalactosyldiacylglycerol synthase gene leads to enhanced salt tolerance in tobacco. Plant Physiology, 165, 1144–1155.

  59. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Métraux, J.-P., & Ryals, J. A. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell, 3, 1085–1094.

  60. Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., Hawkins, N. D., Vermeer, C. P., Lu, C., Lin, W., Truman, W. M., Beale, M. H., Draper, J., Mansfield, J. W., & Grant, M. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant Journal, 63, 443–457.

  61. Wolfram, K., Schmidt, J., Wray, V., Milkowski, C., Schliemann, W., & Strack, D. (2010). Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry, 71, 1076–1084.

Download references


We thank Muzamal Iqbal for assistance with the NMR measurements. R. M. F. H. was supported by a grant from the Higher Education Commission of Pakistan. We also thank Dr. E. Wilson for reviewing this manuscript and useful comments.

Author information

Correspondence to Muhammad T. Akhtar.

Ethics declarations

Conflict of interest

Authors have no competing interests to declare.

Human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1230 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, R.M.F., Kim, H.K., Khurshid, M. et al. Overexpression of AtWRKY50 is correlated with enhanced production of sinapic derivatives in Arabidopsis. Metabolomics 14, 25 (2018).

Download citation


  • Overexpression
  • AtWRKY
  • Arabidopsis
  • NMR spectroscopy
  • Sinapic acid
  • 1-O-sinapoyl-β-d-glucose