Advertisement

Metabolomics

, 13:136 | Cite as

Identification of putative biomarkers for leptomeningeal invasion in B-cell non-Hodgkin lymphoma by NMR metabolomics

  • Gonçalo Graça
  • Joana Desterro
  • Joana Sousa
  • Carlos Fonseca
  • Margarida Silveira
  • Jacinta Serpa
  • Tânia Carvalho
  • Maria G. da Silva
  • Luís G. Gonçalves
Original Article

Abstract

Introduction

B-cell non-Hodgkin lymphoma (B-NHL) is the most common hematological malignancy and different genetic alterations are frequently detected in transformed B lymphocytes. Within this heterogeneous disease, certain aggressive subgroups have an increased risk of central nervous system (CNS) involvement at diagnosis and/or relapse, resulting in parenchymal or leptomeningeal infiltration (LI) in 5–15% of cases. The current sensitivity limitations of cerebrospinal fluid (CSF) cytology and contrast-enhanced MRI for CNS involvement, mainly at early stages, motivates the search for alternative diagnostic methods.

Objectives

Here we aim at using untargeted 1H-NMR metabolomics to identify putative biomarkers for LI in B-NHL patients.

Methods

CSF and peripheral blood samples were obtained from B-NHL patients with a positive (n = 7, LI group) or negative LI diagnostic (n = 13, control group). For seven patients, CSF samples were collected during the course of intrathecal chemotherapy, making it possible to assess the patient´s response to treatment. 1H-NMR spectra were acquired and statistical multivariate and univariate analysis were performed to identify significant alterations.

Results

Significant metabolite differences were found between LI and control groups in CSF, but not in serum. A predictive PLS-DA cross-validated model identified significant pool changes in glycine, alanine, pyruvate, acetylcarnitine, carnitine, and phenylalanine. Additionally, increments in protein signals were detected in the LI group. Significantly, the PLS-DA model predicted correctly all samples obtained from the group of patients in remission during LI treatment.

Conclusions

The results show that the CSF NMR-metabolomics approach is a promising complementary method in clinical diagnosis and treatment follow-up of LI in B-NHL patients.

Keywords

NMR metabolomics B cell non-Hodgkin lymphoma Leptomeningeal infiltration Cerebrospinal fluid Serum 

Notes

Acknowledgements

The authors want to acknowledge Prof. Helena Santos for her support, involvement and contribution to the project. The NMR data was acquired at CERMAX (Centro de Ressonância Magnética António Xavier) and at CICS-UBI which are members of the Portuguese NMR network.

Funding

This work was supported by project PTDC/BIM-ONC/1242/2012 from Fundação para a Ciência e a Tecnologia (FCT), Portugal; project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) and iNOVA4Health—UID/Multi/04462/2013 funded by FEDER through COMPETE2020—POCI and by national funds through FCT. GG and LGG were recipients of post-doc Grants, SFRH/BPD/93752/2013 and SFRH/BPD/111100/2015, awarded by FCT.

Author contributions

GG, LGG, and MGS wrote the manuscript. GG, assisted by JSo, prepared samples and acquired the NMR spectra. GG with assistance of LGG performed the analysis of spectra, produced the statistical models and interpreted results. JD, CF, MGS and MS collected CSF and blood samples, supervised the biochemical analyses, and gathered the clinical data. GG, LGG, TC, JSe and MGS designed the study. All authors contributed to the revision of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This study was reviewed and approved by the ethical committee of the Portuguese Oncology Institute Francisco Gentil, Lisbon (Approval Number: GIC/733 + UIC/660) and performed in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Serum and CSF samples were collected for routine clinical procedures and analyzed retrospectively; therefore in this study a formal consent is not required.

Supplementary material

11306_2017_1269_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 167 KB)

References

  1. An, Y. J., Cho, H. R., Kim, T. M., Keam, B., Kim, J. W., Wen, H., et al. (2015). An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients. International Journal of Cancer, 136, 162–171.CrossRefPubMedGoogle Scholar
  2. Basu, S. K., Remick, S. C., Monga, M., & Gibson, L. F. (2014). Breaking and entering into the CNS: Clues from solid tumor and nonmalignant models with relevance to hematopoietic malignancies. Clinical and Experimental Metastasis, 31, 257–267.CrossRefPubMedGoogle Scholar
  3. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289–300.Google Scholar
  4. Bhatt, A. P., Jacobs, S. R., Freemerman, A. J., Makowski, L., Rathmell, J. C., Dittmer, D. P., & Damania, B. (2012). Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proceedings of the National Academy of Sciences United States of America, 109, 11818–11823.CrossRefGoogle Scholar
  5. Blasco, H., Corcia, P., Moreau, C., Veau, S., Fournier, C., Vourc’h, P., et al. (2010). 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE, 5, e13223. doi: 10.1371/journal.pone.0013223.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bollard, M. E., Stanley, E. G., Lindon, J. C., Nicholson, J. K., & Holmes, E. (2005). NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR in Biomedicine, 18, 143–162.CrossRefPubMedGoogle Scholar
  7. Cao, M. D., Lamichhane, S., Lundgren, S., Bofin, A., Fjøsne, H., Giskeødegård, G. F., & Bathen, T. F. (2014). Metabolic characterization of triple negative breast cancer. BMC cancer, 14, 941.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carrabba, M. G., Tavel, L., Oliveira, G., Forcina, A., Quilici, G., Nardelli, F., et al. (2016). Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia. Journal of Hematology and Oncology, 9, 115. doi: 10.1186/s13045-016-0346-2.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cavaliere, R., Savani, A., Schiff, D., & Wen, P. (2012). Nervous system metastases. In R. B. Daroff, G. M. Fenichel, J. Jankovic & J. C. Mazziotta (Eds.), Bradley’s Neurology in Clinical Practice (6th edn., pp. 1182–1199). Philadelphia: Elsevier Sauders.CrossRefGoogle Scholar
  10. Chamberlain, M., Soffietti, R., Raizer, J., Rudà, R., Brandsma, D., Boogerd, W., et al. (2014). Leptomeningeal metastasis: a response assessment in neuro-oncology critical review of endpoints and response criteria of published randomized clinical trials. Neuro-Oncology, 16, 1176–1185.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chamberlain, M. C. (2008). Neoplastic meningitis. The Oncologist, 13, 967–977.CrossRefPubMedGoogle Scholar
  12. Cho, H. R., Wen, H., Ryu, Y. J., An, Y. J., Kim, H. C., Moon, W. K., et al. (2012). An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis. Cancer Research, 72, 5179–5187.CrossRefPubMedGoogle Scholar
  13. Demopoulos, A. (2004). Leptomeningeal metastases. Current Neurology and Neuroscience Reports, 4, 196–204.CrossRefPubMedGoogle Scholar
  14. Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., Lewis, M. R., et al. (2014). Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Analytical Chemistry, 86, 9887–9894.CrossRefPubMedGoogle Scholar
  15. Gowda, G. A., & Raftery, D. (2015). Can NMR solve some significant challenges in metabolomics? Journal of Magnetic Resonance, 260, 144–160.CrossRefPubMedCentralGoogle Scholar
  16. Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4, 551–561.CrossRefPubMedGoogle Scholar
  17. Huang, Q., & Ouyang, X. (2013). Predictive biochemical-markers for the development of brain metastases from lung cancer: Clinical evidence and future directions. Cancer Epidemiology, 37, 703–707.CrossRefPubMedGoogle Scholar
  18. Kinoshita, Y., & Yokota, A. (1997). Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR in Biomedicine, 10(1), 2–12.CrossRefPubMedGoogle Scholar
  19. Kork, F., Holthues, J., Hellweg, R., Jankowski, V., Tepel, M., Ohring, R., et al. (2009). A possible new diagnostic biomarker in early diagnosis of Alzheimers disease. Current Alzheimer Research, 6, 519–524.CrossRefPubMedGoogle Scholar
  20. Lee, E. Q. (2015). Nervous system metastases from systemic cancer. Continuum Lifelong Learning in Neurology, 21, 415–428.CrossRefPubMedGoogle Scholar
  21. Li, Z., & Zhang, H. (2015). Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cellular and Molecular Life Sciences, 73, 377–392.CrossRefPubMedGoogle Scholar
  22. Lindon, J. C., & Nicholson, J. K. (2008). Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annual Review of Analytical Chemistry, 1, 45–69.CrossRefPubMedGoogle Scholar
  23. Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Reports on NMR Spectroscopy, 38, 1–88.CrossRefGoogle Scholar
  24. Locasale, J. W. (2013). Serine, glycine and the one-carbon cycle: cancer metabolism in full circle. Nature Reviews Cancer, 13, 572–583.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lodi, A., Tiziani, S., Khanim, F. L., Günther, U. L., Viant, M. R., et al. (2013). Proton NMR-based metabolite analyses of archived serial paired serum and urine samples from myeloma patients at different stages of disease activity identifies acetylcarnitine as a novel marker of active disease. PLoS ONE, 8(2), e56422. doi: 10.1371/journal.pone.0056422.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lutz, N. W., & Cozzone, P. J. (2011). Metabolic profiling in multiple sclerosis and other disorders by quantitative analysis of cerebrospinal fluid using nuclear magnetic resonance spectroscopy. Current Pharmaceutical Biotechnology, 12, 1016–1025.CrossRefPubMedGoogle Scholar
  27. MacIntyre, D. A., Jiménez, B., Lewintre, E. J., Reinoso Martín, C., Schäfer, H., García Ballesteros, C., et al. (2010). Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia, 24, 788–797.CrossRefGoogle Scholar
  28. McDunn, J. E., Li, Z., Adam, K. P., Neri, B. P., Wolfert, R. L., Milburn, M. V., et al. (2013). Metabolomic signatures of aggressive prostate cancer. The Prostate, 73, 1547–1560.CrossRefPubMedGoogle Scholar
  29. Meissner, A., van der Plas, A. a, van Dasselaar, N. T., Deelder, A. M., van Hilten, J. J., & Mayboroda, O. a. (2013). 1H-NMR metabolic profiling of cerebrospinal fluid in patients with complex regional pain syndrome-related dystonia. Pain, 155, 1–7.Google Scholar
  30. Mevik, B.-H., & Wehrens, R. (2007). The pls package: principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1–23.CrossRefGoogle Scholar
  31. Nogai, H., Dörken, B., & Lenz, G. (2011). Pathogenesis of non-Hodgkin’s lymphoma. Journal of Clinical Oncology, 29, 1803–1811.CrossRefPubMedGoogle Scholar
  32. Nolan, C. P., & Abrey, L. E. (2003). Leptomeningeal metastases from leukemias and lymphomas. In L. Abrey, M. Chamberlain & H. Engelhardt (Eds.), Neurological disorders: Course and treatment (pp. 897–909). New York: Springer.Google Scholar
  33. O’Sullivan, A., Willoughby, R. E., Mishchuk, D., Alcarraz, B., Cabezas-Sanchez, C., Condori, R. E., et al. (2013). Metabolomics of cerebrospinal fluid from humans treated for rabies. Journal of Proteome Research, 12, 481–490.CrossRefPubMedGoogle Scholar
  34. Öhman, A., & Forsgren, L. (2015). NMR metabonomics of cerebrospinal fluid distinguishes between Parkinson’s disease and controls. Neuroscience Letters, 594, 36–39.CrossRefPubMedGoogle Scholar
  35. Pacilli, A., Calienni, M., Margarucci, S., D’Apolito, M., Petillo, O., Rocchi, L., et al. (2013). Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. Journal of the National Cancer Institute, 105, 489–498.CrossRefPubMedGoogle Scholar
  36. Puchades-Carrasco, L., Lecumberri, R., Martínez-López, J., Lahuerta, J.-J., Mateos, M.-V., Prósper, F., et al. (2013). Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clinical Cancer Research, 19, 4770–4779.CrossRefPubMedGoogle Scholar
  37. Redalen, K. R., Sitter, B., Bathen, T. F., Grøholt, K. K., Hole, K. H., Dueland, S., et al. (2016). High tumor glycine concentration is an adverse prognostic factor in locally advanced rectal cancer. Radiotherapy and Oncology, 118, 393–398.CrossRefPubMedGoogle Scholar
  38. Schmitz, N., Zeynalova, S., Nickelsen, M., Kansara, R., Villa, D., Sehn, L. H., et al. (2016). CNS International prognostic index: A risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP. Journal of Clinical Oncology, 34, 3150–3156.CrossRefPubMedGoogle Scholar
  39. Sinclair, A. J., Viant, M. R., Ball, A. K., Burdon, M. A., Walker, E. A., Stewart, P. M., et al. (2010). NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—A diagnostic tool? NMR in Biomedicine, 23, 123–132.PubMedGoogle Scholar
  40. Sjøbakk, T. E., Vettukattil, R., Gulati, M., Gulati, S., Lundgren, S., Gribbestad, I. S., et al. (2013). Metabolic profiles of brain metastases. International Journal of Molecular Sciences, 14, 2104–2118.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stenson, M., Pedersen, A., Hasselblom, S., Nilsson-Ehle, H., Karlsson, B. G., Pinto, R., & Andersson, P.-O. (2016). Serum nuclear magnetic resonance-based metabolomics and outcome in diffuse large B-cell lymphoma patients—A pilot study. Leukemia and Lymphoma, 57, 1814–1822.CrossRefPubMedGoogle Scholar
  42. Subramanian, A., Gupta, A., Saxena, S., Gupta, A., Kumar, R., Nigam, A., et al. (2005). Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR in Biomedicine, 18, 213–225.CrossRefPubMedGoogle Scholar
  43. Tiziani, S., Kang, Y., Harjanto, R., Axelrod, J., Piermarocchi, C., et al. (2013). Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia. PLoS ONE, 8(12), e82859. doi: 10.1371/journal.pone.0082859.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vermeersch, K. a, & Styczynski, M. P. (2013). Applications of metabolomics in cancer research. Journal of Carcinogenesis, 12, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K. A., Dommisse, R., Lemière, F., et al. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang, Y., Zhang, L., Chen, W.-L., Wang, J.-H., Li, N., Li, J.-M., et al. (2013). Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. Journal of Proteome Research, 12, 4393–4401.CrossRefPubMedGoogle Scholar
  47. Westerhuis, J., Hoefsloot, H., Smit, S., Vis, D., Smilde, A., van Velzen, E., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.CrossRefGoogle Scholar
  48. Weston, C. L., Glantz, M. J., & Connor, J. R. (2011). Detection of cancer cells in the cerebrospinal fluid: current methods and future directions. Fluids and Barriers of the CNS, 8, 14. doi: 10.1186/2045-8118-8-14.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41(Database issue), D801-7.PubMedGoogle Scholar
  50. Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9, 280–299.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gonçalo Graça
    • 1
  • Joana Desterro
    • 2
  • Joana Sousa
    • 1
  • Carlos Fonseca
    • 2
  • Margarida Silveira
    • 2
  • Jacinta Serpa
    • 2
    • 3
  • Tânia Carvalho
    • 4
  • Maria G. da Silva
    • 2
  • Luís G. Gonçalves
    • 1
  1. 1.ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
  2. 2.IPOLFG, Instituto Português de Oncologia de Lisboa Francisco GentilLisbonPortugal
  3. 3.CEDOC, Centro de Investigação em Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbonPortugal
  4. 4.IMM, Instituto de Medicina Molecular, Universidade de LisboaLisbonPortugal

Personalised recommendations