Advertisement

Metabolomics

, 13:139 | Cite as

Translation of exhaled breath volatile analyses to sport and exercise applications

  • Liam M. Heaney
  • Martin R. Lindley
Review Article

Abstract

Background

Exhaled breath gases are becomingly increasingly investigated for use as non-invasive measurements for clinical diagnosis, prognosis and therapeutic monitoring. Exhaled volatile organic compounds (VOCs) in the breath, which make up the exhaled volatilome, offer a rich sample medium that provides both information to external exposures as well as endogenous metabolism. For these reasons, exhaled breath analyses can be extended further beyond disease-based investigations, and used for wider biomarker measurement purposes. The use of a rapid, non-invasive (and potentially non-physically demanding) test in an exercise and/or sporting situation may provide additional information for translation to performance sport, recreational exercise/fitness and clinical exercise health.

Aim of review

This review intends to provide an overview into the initial exploration of exhaled VOC measurements in sport and exercise science, and understand current limitations in knowledge and instrumentation that have restricted these methodologies in becoming common practice.

Key scientific concepts of review

Exhaled VOCs have been applied to sport/exercise investigations with a current emphasis on measurement of chemical exposure during and/or following exercise. This includes the measurement of disinfection by-products from chlorine-disinfected swimming pools, as well as exposure to petrochemicals from combustion engines (e.g. vehicle fumes). However, exhaled VOC measurements have been less employed in the context of performance sport. For example, the application of exhaled VOCs to map biochemical/physiological processes of intense exercise is currently under explored and warrants further study. Nevertheless, there is promise for exhaled VOC testing in the development of rapid/on-line anti-doping screens, with initial steps taken in this field.

Keywords

Condensate Anti-doping Mass spectrometry Metabolism VOC Volatilome 

Notes

Funding

No funding was received for the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors confirm that there are no conflicts of interest to declare.

Ethical approval

No ethical requirements were present for this review article as no novel investigations generating data involving human participants are included.

References

  1. Aggazzotti, G., Fantuzzi, G., Righi, E., & Predieri, G. (1995). Environmental and biological monitoring of chloroform in indoor swimming pools. Journal of Chromatography A, 710(1), 181–190. doi: 10.1016/0021-9673(95)00432-M.CrossRefPubMedGoogle Scholar
  2. Amann, A., Costello Bde, L., Miekisch, W., Schubert, J., Buszewski, B., Pleil, J., et al. (2014a). The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. Journal of Breath Research, 8(3), 034001. doi: 10.1088/1752-7155/8/3/034001.CrossRefPubMedGoogle Scholar
  3. Amann, A., Miekisch, W., Schubert, J., Buszewski, B., Ligor, T., Jezierski, T., et al. (2014b). Analysis of exhaled breath for disease detection. Annual Review of Analytical Chemistry, 7, 455–482. doi: 10.1146/annurev-anchem-071213-020043.CrossRefPubMedGoogle Scholar
  4. Andersson, M., Hedman, L., Nordberg, G., Forsberg, B., Eriksson, K., & Ronmark, E. (2015). Swimming pool attendance is related to asthma among atopic school children: A population-based study. Environmental Health: A Global Access Science Source, 14, 37. doi: 10.1186/s12940-015-0023-x.CrossRefGoogle Scholar
  5. Araneda, O. F., Guevara, A. J., Contreras, C., Lagos, N., & Berral, F. J. (2012). Exhaled breath condensate analysis after long distance races. International Journal of Sports Medicine, 33(12), 955–961. doi: 10.1055/s-0032-1316314.CrossRefPubMedGoogle Scholar
  6. Araneda, O. F., Urbina-Stagno, R., Tuesta, M., Haichelis, D., Alvear, M., Salazar, M. P., et al. (2014). Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes. Journal of Physiology and Biochemistry, 70(1), 107–115. doi: 10.1007/s13105-013-0285-0.CrossRefPubMedGoogle Scholar
  7. Basanta, M., Koimtzis, T., Singh, D., Wilson, I., & Thomas, C. L. (2007). An adaptive breath sampler for use with human subjects with an impaired respiratory function. Analyst, 132(2), 153–163. doi: 10.1039/b608608j.CrossRefPubMedGoogle Scholar
  8. Beck, O., Sandqvist, S., Eriksen, P., Franck, J., & Palmskog, G. (2011). Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. Journal of Analytical Toxicology, 35(3), 129–133. doi: 10.1093/anatox/35.3.129.CrossRefPubMedGoogle Scholar
  9. Berchtold, C., Bosilkovska, M., Daali, Y., Walder, B., & Zenobi, R. (2014). Real-time monitoring of exhaled drugs by mass spectrometry. Mass Spectrometry Reviews, 33(5), 394–413. doi: 10.1002/mas.21393.CrossRefPubMedGoogle Scholar
  10. Bernard, A., Carbonnelle, S., de Burbure, C., Michel, O., & Nickmilder, M. (2006). Chlorinated pool attendance, atopy, and the risk of asthma during childhood. Environmental Health Perspectives, 114(10), 1567–1573.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bikov, A., Gajdocsi, R., Huszar, R., Szili, B., Lazar, Z., Antus, B., et al. (2010). Exercise increases exhaled breath condensate cysteinyl leukotriene concentration in asthmatic patients. Journal of Asthma, 47(9), 1057–1062. doi: 10.1080/02770903.2010.512690.CrossRefPubMedGoogle Scholar
  12. Bikov, A., Galffy, G., Tamasi, L., Bartusek, D., Antus, B., Losonczy, G., et al. (2014). Exhaled breath condensate pH decreases during exercise-induced bronchoconstriction. Respirology, 19(4), 563–569. doi: 10.1111/resp.12248.CrossRefPubMedGoogle Scholar
  13. Bikov, A., Lazar, Z., Schandl, K., Antus, B. M., Losonczy, G., & Horvath, I. (2011). Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiologica Hungarica, 98(3), 321–328. doi: 10.1556/APhysiol.98.2011.3.9.CrossRefPubMedGoogle Scholar
  14. Bolden, A. L., Kwiatkowski, C. F., & Colborn, T. (2015). New look at BTEX: Are ambient levels a problem? Environmental Science and Technology, 49(9), 5261–5276. doi: 10.1021/es505316f.CrossRefPubMedGoogle Scholar
  15. Boots, A. W., van Berkel, J. J., Dallinga, J. W., Smolinska, A., Wouters, E. F., & van Schooten, F. J. (2012). The versatile use of exhaled volatile organic compounds in human health and disease. Journal of Breath Research, 6(2), 027108. doi: 10.1088/1752-7155/6/2/027108.CrossRefPubMedGoogle Scholar
  16. Bos, L. D., Weda, H., Wang, Y., Knobel, H. H., Nijsen, T. M., Vink, T. J., et al. (2014). Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. European Respiratory Journal, 44(1), 188–197. doi: 10.1183/09031936.00005614.CrossRefPubMedGoogle Scholar
  17. Caro, J., & Gallego, M. (2008). Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environmental Science and Technology, 42(13), 5002–5007.CrossRefPubMedGoogle Scholar
  18. Chan, H. H., & Burns, S. F. (2013). Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Applied Physiology, Nutrition, and Metabolism, 38(2), 182–187. doi: 10.1139/apnm-2012-0136.CrossRefPubMedGoogle Scholar
  19. Chen, H., Venter, A., & Cooks, R. G. (2006). Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chemical Communications. doi: 10.1039/B602614A.Google Scholar
  20. Cikach, F. S. Jr., Tonelli, A. R., Barnes, J., Paschke, K., Newman, J., Grove, D., et al. (2014). Breath analysis in pulmonary arterial hypertension. Chest, 145(3), 551–558. doi: 10.1378/chest.13-1363.CrossRefPubMedGoogle Scholar
  21. Couto, M., Barbosa, C., Silva, D., Rudnitskaya, A., Delgado, L., Moreira, A., et al. (2017). Oxidative stress in asthmatic and non-asthmatic adolescent swimmers—A breathomics approach. Pediatric Allergy and Immunology, 28(5), 452–457. doi: 10.1111/pai.12729.CrossRefPubMedGoogle Scholar
  22. Davis, M. D., & Hunt, J. (2012). Exhaled breath condensate pH assays. Immunology and Allergy Clinics of North America, 32(3), 377–386. doi:  10.1016/j.iac.2012.06.003.CrossRefPubMedGoogle Scholar
  23. Davis, M. D., Montpetit, A., & Hunt, J. (2012). Exhaled breath condensate: An overview. Immunology and Allergy Clinics of North America, 32(3), 363–375. doi: 10.1016/j.iac.2012.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. de Lacy Costello, B., Amann, A., Al-Kateb, H., Flynn, C., Filipiak, W., Khalid, T., et al. (2014). A review of the volatiles from the healthy human body. Journal of Breath Research, 8(1), 014001. doi: 10.1088/1752-7155/8/1/014001.CrossRefPubMedGoogle Scholar
  25. Decombaz, J., Grathwohl, D., Pollien, P., Schmitt, J. A., Borrani, F., & Lecoultre, V. (2013). Effect of short-duration lipid supplementation on fat oxidation during exercise and cycling performance. Applied Physiology, Nutrition, and Metabolism, 38(7), 766–772. doi: 10.1139/apnm-2012-0459.CrossRefPubMedGoogle Scholar
  26. Fernandez-Peralbo, M. A., Calderon Santiago, M., Priego-Capote, F., & Luque de Castro, M. D. (2015). Study of exhaled breath condensate sample preparation for metabolomics analysis by LC-MS/MS in high resolution mode. Talanta, 144, 1360–1369. doi: 10.1016/j.talanta.2015.08.010.CrossRefPubMedGoogle Scholar
  27. Hamini, S., Khoubnasabjafari, M., Ansarin, K., Jouyban-Gharamaleki, V., & Jouyban, A. (2017). Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. Analytical Methods, 9, 2342, doi: 10.1039/c7ay00110j.CrossRefGoogle Scholar
  28. Heaney, L. M., Deighton, K., & Suzuki, T. (2017). Non-targeted metabolomics in sport and exercise science. Journal of Sports Sciences. doi: 10.1080/02640414.2017.1305122.PubMedGoogle Scholar
  29. Heaney, L. M., Ruszkiewicz, D. M., Arthur, K. L., Hadjithekli, A., Aldcroft, C., Lindley, M. R., et al. (2016). Real-time monitoring of exhaled volatiles using atmospheric pressure chemical ionization on a compact mass spectrometer. Bioanalysis, 8(13), 1325–1336. doi: 10.4155/bio-2016-0045.CrossRefPubMedGoogle Scholar
  30. Judd, S. J., & Bullock, G. (2003). The fate of chlorine and organic materials in swimming pools. Chemosphere, 51(9), 869–879. doi: 10.1016/s0045-6535(03)00156-5.CrossRefPubMedGoogle Scholar
  31. Kang, S., & Paul Thomas, C. L. (2016). How long may a breath sample be stored for at -80 degrees C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax:Carbograph trap adsorbent bed from exhaled breath. Journal of Breath Research, 10(2), 026011. doi: 10.1088/1752-7155/10/2/026011.CrossRefPubMedGoogle Scholar
  32. Kazani, S., & Israel, E. (2010). Exhaled breath condensates in asthma: Diagnostic and therapeutic implications. Journal of Breath Research, 4(4), 047001. doi: 10.1088/1752-7155/4/4/047001.CrossRefPubMedGoogle Scholar
  33. Kharitonov, S. A., & Barnes, P. J. (2004). Effects of corticosteroids on noninvasive biomarkers of inflammation in asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 1(3), 191–199.CrossRefPubMedGoogle Scholar
  34. Kim, H., Shim, J., & Lee, S. (2002). Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 46(1), 123–130.CrossRefPubMedGoogle Scholar
  35. King, J., Kupferthaler, A., Unterkofler, K., Koc, H., Teschl, S., Teschl, G., et al. (2009). Isoprene and acetone concentration profiles during exercise on an ergometer. Journal of Breath Research, 3(2), 027006. doi: 10.1088/1752-7155/3/2/027006.CrossRefPubMedGoogle Scholar
  36. King, J., Unterkofler, K., Teschl, G., Teschl, S., Mochalski, P., Koc, H., et al. (2012). A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. Journal of Breath Research, 6(1), 016005. doi: 10.1088/1752-7155/6/1/016005.CrossRefPubMedGoogle Scholar
  37. Koc, H., King, J., Teschl, G., Unterkofler, K., Teschl, S., Mochalski, P., et al. (2011). The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. Journal of Breath Research, 5(3), 037102. doi: 10.1088/1752-7155/5/3/037102.CrossRefPubMedGoogle Scholar
  38. Kuban, P., & Foret, F. (2013). Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Analytica Chimica Acta, 805, 1–18. doi: 10.1016/j.aca.2013.07.049.CrossRefPubMedGoogle Scholar
  39. Kuban, P., Kobrin, E. G., & Kaljurand, M. (2012). Capillary electrophoresis—A new tool for ionic analysis of exhaled breath condensate. Journal of Chromatography A, 1267, 239–246. doi: 10.1016/j.chroma.2012.06.085.CrossRefPubMedGoogle Scholar
  40. Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R., & Fowler, S. J. (2017). Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics, 13, 110. doi: 10.1007/s11306-017-1241-8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lindstrom, A. B., Pleil, J. D., & Berkoff, D. C. (1997). Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environmental Health Perspectives, 105(6), 636–642.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marcondes-Braga, F. G., Gutz, I. G. R., Batista, G. L., Saldiva, P. H. N., Ayub-Ferreira, S. M., Issa, V. S., et al. (2012). Exhaled acetone as a new biomaker of heart failure severity. Chest, 142(2), 457–466. doi: 10.1378/chest.11-2892.CrossRefPubMedGoogle Scholar
  43. Meier, L., Berchtold, C., Schmid, S., & Zenobi, R. (2012). Extractive electrospray ionization mass spectrometry-enhanced sensitivity using an ion funnel. Analytical Chemistry, 84(4), 2076–2080. doi: 10.1021/ac203022x.CrossRefPubMedGoogle Scholar
  44. Miekisch, W., Kischkel, S., Sawacki, A., Liebau, T., Mieth, M., & Schubert, J. K. (2008). Impact of sampling procedures on the results of breath analysis. Journal of Breath Research, 2(2), 026007. doi: 10.1088/1752-7155/2/2/026007.CrossRefPubMedGoogle Scholar
  45. Miekisch, W., Schubert, J. K., & Noeldge-Schomburg, G. F. (2004). Diagnostic potential of breath analysis—focus on volatile organic compounds. Clinica Chimica Acta, 347(1–2), 25–39. doi: 10.1016/j.cccn.2004.04.023.CrossRefGoogle Scholar
  46. Mochalski, P., King, J., Unterkofler, K., & Amann, A. (2013). Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. The Analyst, 138(5), 1405–1418. doi: 10.1039/c2an36193k.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morissette, M. C., Murray, N., Turmel, J., Milot, J., Boulet, L. P., & Bougault, V. (2016). Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. European Journal of Sport Science, 16(5), 569–576. doi: 10.1080/17461391.2015.1063702.CrossRefPubMedGoogle Scholar
  48. Nakhleh, M. K., Haick, H., Humbert, M., & Cohen-Kaminsky, S. (2017). Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. European Respiratory Journal, 49(2), 1601897. doi: 10.1183/13993003.01897-2016.CrossRefPubMedGoogle Scholar
  49. Ohlsson, J., Ralph, D. D., Mandelkorn, M. A., Babb, A. L., & Hlastala, M. P. (1990). Accurate measurement of blood alcohol concentration with isothermal rebreathing. Journal of Studies on Alcohol, 51(1), 6–13.CrossRefPubMedGoogle Scholar
  50. Pleil, J. D., & Lindstrom, A. B. (1995). Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters. Journal of Chromatography B: Biomedical Sciences and Applications, 665(2), 271–279.CrossRefGoogle Scholar
  51. Rundell, K. W. (2012). Effect of air pollution on athlete health and performance. British Journal of Sports Medicine, 46(6), 407–412. doi: 10.1136/bjsports-2011-090823.CrossRefPubMedGoogle Scholar
  52. Smith, D., Spanel, P., Herbig, J., & Beauchamp, J. (2014). Mass spectrometry for real-time quantitative breath analysis. Journal of Breath Research, 8(2), 027101. doi: 10.1088/1752-7155/8/2/027101.CrossRefPubMedGoogle Scholar
  53. Storer, M., Salmond, J., Dirks, K. N., Kingham, S., & Epton, M. (2014). Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study. Journal of Breath Research, 8(3), 037106. doi: 10.1088/1752-7155/8/3/037106.CrossRefPubMedGoogle Scholar
  54. Szabo, A., Ruzsanyi, V., Unterkofler, K., Mohacsi, A., Tuboly, E., Boros, M., et al. (2015). Exhaled methane concentration profiles during exercise on an ergometer. Journal of Breath Research, 9(1), 016009. doi: 10.1088/1752-7155/9/1/016009.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thevis, M., Krug, O., Geyer, H., & Schanzer, W. (2017). Expanding analytical options in sports drug testing: Mass spectrometric detection of prohibited substances in exhaled breath. Rapid Communications in Mass Spectrometry, 31, 1290–1296. doi: 10.1002/rcm.7903.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Trefz, P., Kamysek, S., Fuchs, P., Sukul, P., Schubert, J. K., & Miekisch, W. (2017). Drug detection in breath: Non-invasive assessment of illicit or pharmaceutical drugs. Journal of Breath Research, 11(2), 024001. doi: 10.1088/1752-7163/aa61bf.CrossRefPubMedGoogle Scholar
  57. Tuesta, M., Alvear, M., Carbonell, T., Garcia, G., Guzman-Venegas, R., & Araneda, O. F. (2016). Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans. Journal of Physiology and Biochemistry, 72(2), 353–360. doi: 10.1007/s13105-016-0486-4.CrossRefPubMedGoogle Scholar
  58. Turner, M. A., Bandelow, S., Edwards, L., Patel, P., Martin, H. J., Wilson, I. D., et al. (2013). The effect of a paced auditory serial addition test (PASAT) intervention on the profile of volatile organic compounds in human breath: A pilot study. Journal of Breath Research, 7(1), 017102. doi: 10.1088/1752-7155/7/1/017102.CrossRefPubMedGoogle Scholar
  59. van der Schee, M. P., Paff, T., Brinkman, P., van Aalderen, W. M. C., Haarman, E. G., & Sterk, P. J. (2015). Breathomics in lung disease. Chest, 147(1), 224–231. doi: 10.1378/chest.14-0781.CrossRefPubMedGoogle Scholar
  60. Wang, Z., & Wang, C. (2013). Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of Breath Research, 7(3), 037109. doi: 10.1088/1752-7155/7/3/037109.CrossRefPubMedGoogle Scholar
  61. Wasserman, K., Beaver, W. L., Sun, X. G., & Stringer, W. W. (2011). Arterial H+ regulation during exercise in humans. Respiratory Physiology & Neurobiology, 178(2), 191–195. doi: 10.1016/j.resp.2011.05.018.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, Glenfield HospitalUniversity of LeicesterLeicesterUK
  2. 2.Translational Chemical Biology Research Group, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK

Personalised recommendations