Skip to main content

Advertisement

Log in

Targeted metabolomics reveals altered oxylipin profiles in plasma of mild cognitive impairment patients

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction and objective

Mild cognitive impairment (MCI) is considered to be a prodromal stage of Alzheimer’s disease (AD), which is the most common type of dementia. Although MCI is a common clinical manifestation in the elderly, the pathology and molecular mechanisms are not fully understood. Oxylipins are a major class of lipid-derived signaling mediators, which have been implicated in the pathology of MCI and AD. In this study, we investigated the changes of oxylipin profiles in plasma of MCI patients.

Methods

We performed a targeted liquid chromatography—mass spectrometry analysis to quantify 49 oxylipins and 4 polyunsaturated fatty acids in plasma samples of 60 clinically diagnosed MCI patients and 56 age- and gender-matched cognitively normal individuals.

Results

We found that the levels of linoleic acid (LA) and 7 oxylipins were significantly altered in MCI patients when compared to the controls. Notably, oxylipins synthesized through 5-lipoxygenase (5-LOX) and cytochrome P450 (CYP450) pathways of arachidonic acid (AA) or LA were elevated in MCI patients, which is in accordance with previously reports that oxylipins from the same pathways were increased in the brain tissues of AD and MCI patients, suggesting the potential correlations of oxylipin changes in 5-LOX and CYP450 pathways between the peripheral blood and the brain tissues in MCI and AD patients.

Conclusion

This study is the first report on plasma oxylipin profiles in MCI patients, and disease-relevant changes of oxylipins and oxylipin pathways were identified. The results represent potentially an efficient method to monitor certain oxylipin changes in the brain tissues of MCI or AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. doi:10.1016/j.jalz.2011.03.008.

    Article  Google Scholar 

  • Boyce, J. A. (2008). Eicosanoids in asthma, allergic inflammation, and host defense. Current Molecular Medicine, 8(5), 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Capra, V., Back, M., Barbieri, S. S., Camera, M., Tremoli, E., & Rovati, G. E. (2013). Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Medicinal Research Reviews, 33(2), 364–438. doi:10.1002/med.21251.

    Article  CAS  PubMed  Google Scholar 

  • Chu, J., & Pratico, D. (2011). 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Annals of Neurology, 69(1), 34–46. doi:10.1002/ana.22234.

    Article  CAS  PubMed  Google Scholar 

  • Crago, E. A., Thampatty, B. P., Sherwood, P. R., Kuo, C. W., Bender, C., Balzer, J., et al. (2011). Cerebrospinal fluid 20-HETE is associated with delayed cerebral ischemia and poor outcomes after aneurysmal subarachnoid hemorrhage. Stroke: A Journal of Cerebral Circulation, 42(7), 1872–1877. doi:10.1161/STROKEAHA.110.605816.

    Article  Google Scholar 

  • Czapski, G. A., Czubowicz, K., Strosznajder, J. B., & Strosznajder, R. P. (2016). The Lipoxygenases: Their regulation and implication in Alzheimer’s disease. Neurochemical Research, 41(1–2), 243–257. doi:10.1007/s11064-015-1776-x.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Chong, M. S., Lim, W. S., & Ng, T. P. (2012). The modified mini-mental state examination test: Normative data for Singapore Chinese older adults and its performance in detecting early cognitive impairment. Singapore Medical Journal, 53(7), 458–462.

    PubMed  Google Scholar 

  • Feng, L., Yap, P. L. K., Lee, T. S., & Ng, T. P. (2009). Neuropsychiatric symptoms in mild cognitive impairment: a population-based study. Asia-Pacific Psychiatry, 1, 23–27. doi:10.1111/j.1758-5872.2009.00005.x.

    Article  Google Scholar 

  • Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke: A Journal of Cerebral Circulation, 42(9), 2672–2713. doi:10.1161/STR.0b013e3182299496.

    Article  Google Scholar 

  • Ikonomovic, M. D., Abrahamson, E. E., Uz, T., Manev, H., & Dekosky, S. T. (2008). Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 56(12), 1065–1073. doi:10.1369/jhc.2008.951855.

    Article  CAS  Google Scholar 

  • Johnson, J. K., Pa, J., Boxer, A. L., Kramer, J. H., Freeman, K., & Yaffe, K. (2010). Baseline predictors of clinical progression among patients with dysexecutive mild cognitive impairment. Dementia and geriatric cognitive disorders, 30(4), 344–351. doi:10.1159/000318836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi, Y. B., Giannopoulos, P. F., & Pratico, D. (2015). The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer’s disease. Trends in Pharmacological Sciences, 36(3), 181–186. doi:10.1016/j.tips.2015.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, Y. B., & Pratico, D. (2014). The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Frontiers in Cellular Neuroscience, 8, 436. doi:10.3389/fncel.2014.00436.

    PubMed  Google Scholar 

  • Kowianski, P., Lietzau, G., Steliga, A., Waskow, M., & Morys, J. (2013). The astrocytic contribution to neurovascular coupling–still more questions than answers? Neuroscience Research, 75(3), 171–183. doi:10.1016/j.neures.2013.01.014.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. K., Collinson, S. L., Feng, L., & Ng, T. P. (2012). Preliminary normative neuropsychological data for an elderly chinese population. The Clinical Neuropsychologist, 26(2), 321–334. doi: 10.1080/13854046.2011.652180.

    Article  PubMed  Google Scholar 

  • Lopez, O. L., Kuller, L. H., Becker, J. T., Dulberg, C., Sweet, R. A., Gach, H. M., et al. (2007). Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Archives of Neurology, 64(3), 416–420. doi:10.1001/archneur.64.3.416.

    Article  PubMed  Google Scholar 

  • Lu, Y., Fang, J., Ong, C. N., Chen, S., Li, N., Cui, L., et al. (2016). Targeted analysis of omega-6-derived oxylipins and parent polyunsaturated fatty acids in serum of hepatitis B virus-related hepatocellular carcinoma patients. Metabolomics, 13(1), 6. doi:10.1007/s11306-016-1148-9.

    Article  Google Scholar 

  • Markesbery, W. R., Kryscio, R. J., Lovell, M. A., & Morrow, J. D. (2005). Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Annals of Neurology, 58(5), 730–735. doi:10.1002/ana.20629.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265. doi:10.1111/j.1600-0447.2008.01326.x.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Binder, L., Counts, S. E., DeKosky, S. T., de Toledo-Morrell, L., Ginsberg, S. D., et al. (2012). Mild cognitive impairment: Pathology and mechanisms. Acta Neuropathologica, 123(1), 13–30. doi:10.1007/s00401-011-0884-1.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J. W., Young, J. M., Borkar, R. N., Woltjer, R. L., Quinn, J. F., Silbert, L. C., et al. (2014). Role of soluble epoxide hydrolase in age-related vascular cognitive decline. Prostaglandins & Other Lipid Mediators, 113–115, 30–37. doi:10.1016/j.prostaglandins.2014.09.003.

    Article  Google Scholar 

  • Nick, T. G., & Campbell, K. M. (2007). Logistic regression. Methods in Molecular Biology, 404, 273–301. doi:10.1007/978-1-59745-530-5_14.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, O. H., & Rask-Madsen, J. (1996). Mediators of inflammation in chronic inflammatory bowel disease. Scandinavian Journal of Gastroenterology. Supplement, 216, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, J. T., & Thomas, A. (2015). Vascular dementia. Lancet, 386(10004), 1698–1706. doi:10.1016/S0140-6736(15)00463-8.

    Article  PubMed  Google Scholar 

  • Pachana, N. A., Byrne, G. J., Siddle, H., Koloski, N., Harley, E., & Arnold, E. (2007). Development and validation of the geriatric anxiety inventory. International Psychogeriatrics/IPA, 19(1), 103–114. 10.1017/S1041610206003504.

    Article  Google Scholar 

  • Petersen, R. C. (2003). Mild cognitive impairment clinical trials. Nature Reviews: Drug Discovery, 2(8), 646–653. doi:10.1038/nrd1155.

    CAS  PubMed  Google Scholar 

  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. doi:10.1111/j.1365-2796.2004.01388.x.

    Article  CAS  PubMed  Google Scholar 

  • Phillis, J. W., Horrocks, L. A., & Farooqui, A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Research Reviews, 52(2), 201–243. doi:10.1016/j.brainresrev.2006.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Pratico, D., Zhukareva, V., Yao, Y., Uryu, K., Funk, C. D., Lawson, J. A., et al. (2004). 12/15-lipoxygenase is increased in Alzheimer’s disease: Possible involvement in brain oxidative stress. The American Journal of Pathology, 164(5), 1655–1662. doi:10.1016/S0002-9440(10)63724-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman, R. J., Renic, M., Dunn, K. M., Takeuchi, K., & Hacein-Bey, L. (2006). Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm. Neurological Research, 28(7), 738–749. doi:10.1179/016164106X152016.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mejia, R. O., & Mucke, L. (2010). Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochimica et Biophysica Acta, 1801(8), 784–790. doi:10.1016/j.bbalip.2010.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh, J. I., & Yesavage, J. A. (1986). Geriatric depression scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontologist, 5, 165–173. doi:10.1300/J018v05n01_09.

    Article  Google Scholar 

  • Spector, A. A. (2009). Arachidonic acid cytochrome P450 epoxygenase pathway. Journal of Lipid Research. doi:10.1194/jlr.R800038-JLR200.

    PubMed  PubMed Central  Google Scholar 

  • Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. American Journal of Physiology: Cell Physiology, 292(3), C996-1012. doi:10.1152/ajpcell.00402.2006.

    PubMed  Google Scholar 

  • Strassburg, K., Huijbrechts, A. M., Kortekaas, K. A., Lindeman, J. H., Pedersen, T. L., Dane, A., et al. (2012). Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: Application in cardiac surgery. Analytical and Bioanalytical Chemistry, 404(5), 1413–1426. doi:10.1007/s00216-012-6226-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Koh, H. W., Choi, H., Koh, W. P., Yuan, J. M., Newman, J. W., et al. (2016). Plasma fatty acids, oxylipins, and risk of myocardial infarction: The Singapore Chinese Health Study. Journal of Lipid Research, 57(7), 1300–1307. doi:10.1194/jlr.P066423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tombaugh, T. N., & McIntyre, N. J. (1992). The mini-mental status examination: A comprehensive review. Journal of the American Geriatrics Society, 40(9), 922–935. doi:10.1111/j.1532-5415.1992.tb01992.x.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Clark, C. M., Trojanowski, J. Q., Lee, V. M., & Pratico, D. (2005). Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment. Annals of Neurology, 58(4), 623–626. doi:10.1002/ana.20558.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, Y., Yoshikawa, A., Kinumi, T., Ogawa, Y., Saito, Y., Ohara, K., et al. (2009). Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers. Neurobiology of Aging, 30(2), 174–185. doi:10.1016/j.neurobiolaging.2007.06.012.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Mahendran, R., Rawtaer, I., Kua, E. H., & Feng, L. (2016). Poor sleep quality is observed in mild cognitive impairment and is largely unrelated to depression and anxiety. Aging & Mental Health, 21(8), 823–828. doi:10.1080/13607863.2016.1161007.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National University of Singapore Virtual Institute for the Study of Ageing [grant number VG-8]; the Alice Lim Memorial Fund, Singapore [Grant Number ALMFA/2010]; the National Medical Research Council of Singapore [Grant Number NMRC/TA/0053/2016].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Feng or Choon Nam Ong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2017_1249_MOESM1_ESM.pdf

LC-MS/MS chromatogram of 48 oxylipins and 4 polyunsaturated fatty acids performed on a triple quadrupole with multiple reaction monitoring (MRM) in negative mode.Supplementary material 1 (PDF 58 KB)

11306_2017_1249_MOESM2_ESM.pdf

Receiver Operating Curve of the significantly altered oxylipins and linoleic acid in MCI patients. The sensitivity and specificity refer to distinguishing MCI patients and controls. Supplementary material 2 (PDF 5 KB)

Supplementary material 3 (DOCX 20 KB)

Supplementary material 4 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Cui, L., Sun, Y. et al. Targeted metabolomics reveals altered oxylipin profiles in plasma of mild cognitive impairment patients. Metabolomics 13, 112 (2017). https://doi.org/10.1007/s11306-017-1249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1249-0

Keywords

Navigation