, 13:71 | Cite as

A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti

  • Walter Omar DraghiEmail author
  • María Florencia Del Papa
  • Aiko Barsch
  • Francisco J. Albicoro
  • Mauricio J. Lozano
  • Alfred Pühler
  • Karsten Niehaus
  • Antonio Lagares
Original Article



Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.


To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.


A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(−) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.


Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.


Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.


Metabolomics Sinorhizobium meliloti Acid-tolerance response Acid stress 



This research was partially supported by the National Science and Technology Research Council (PIP2014/0420, Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and National Agency for Science and Technology Promotion (PICT 2012/1719). W.O.D., M.F.D.P., F.A., M.J.L., and A.L. are members of CONICET. The authors are grateful to Dr. Donald F. Haggerty for editing the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors have any conflict of interest to declare.

Research involving human or animal participants

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2017_1210_MOESM1_ESM.docx (521 kb)
Supplementary material 1 (DOCX 520 KB)
11306_2017_1210_MOESM2_ESM.docx (31 kb)
Supplementary material 2 (DOCX 31 KB)


  1. Bandara, A. B., Contreras, A., Contreras-Rodriguez, A., Martins, A. M., Dobrean, V., Poff-Reichow, S., et al. (2007). Brucella suis urease encoded by ure 1 but not ure 2 is necessary for intestinal infection of BALB/c mice. BMC Microbiology, 7(1), 57.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barsch, A., Patschkowski, T., & Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Functional & Integrative Genomics, 4(4), 219–230.CrossRefGoogle Scholar
  3. Bore, E., Langsrud, S., Langsrud, O., Rode, T. M., & Holck, A. (2007). Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology, 153(7), 2289–2303.CrossRefPubMedGoogle Scholar
  4. Caetano-Anollés, G., Lagares, A., & Favelukes, G. (1989). Adsorption of Rhizobium meliloti to alfalfa roots: Dependence on divalent cations and pH. Plant and Soil, 117(1), 67–74.CrossRefGoogle Scholar
  5. Capela, D., Barloy-Hubler, F., Gouzy, J., Bothe, G., Ampe, F., Batut, J., et al. (2001). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9877–9882.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen, E., Fisher, R., Perovich, V., Sabio, E., & Long, S. (2009). Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. Journal of Bacteriology, 191, 6833–6842.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, Y. Y., Weaver, C. A., & Burne, R. A. (2000). Dual functions of Streptococcus salivarius urease. Journal of Bacteriology, 182(16), 4667–4669.CrossRefPubMedPubMedCentralGoogle Scholar
  8. da Costa, M. S., Santos, H., & Galinski, E. A. (1998). An overview of the role and diversity of compatible solutes in bacteria and Archaea. Advances in Biochemical Engineering/Biotechnology, 61, 117–153.CrossRefPubMedGoogle Scholar
  9. Dilworth, M. J., Howieson, J. G., Reeve, W. G., Tiwari, R. P., & Glenn, A. R. (2001). Acid tolerance in legume root nodule bacteria and selecting for it. Australian Journal of Experimental Agriculture, 41, 435–446.CrossRefGoogle Scholar
  10. Dilworth, M. J., Rynne, F. G., Castelli, J. M., Vivas-Marfisi, A. I., & Glenn, A. R. (1999). Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology, 145, 1585–1593.CrossRefPubMedGoogle Scholar
  11. Draghi, W. O., Del Papa, M. F., Hellweg, C., Watt, S. A., Watt, T. F., Barsch, A., et al. (2016). A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Scientific Reports, 6, 29278.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Draghi, W. O., Del Papa, M. F., Pistorio, M., Lozano, M., de Los Angeles Giusti, M., Torres Tejerizo, G. A., et al. (2010). Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH. FEMS Microbiology Letters, 302(2), 123–130.CrossRefPubMedGoogle Scholar
  13. Dunn, M. F. (2015). Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Critical reviews in microbiology, 41(4), 411–451.CrossRefPubMedGoogle Scholar
  14. Encarnacion, S., Dunn, M., Willms, K., & Mora, J. (1995). Fermentative and aerobic metabolism in Rhizobium etli. Journal of Bacteriology, 177(11), 3058–3066.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Evans, C. G. T., Herbert, D., & Tempest, D. W. (1970). The continuous cultivation of micro-organisms. II. Construction of a chemostat. Methods in Microbiology, 2, 277–327.CrossRefGoogle Scholar
  16. Ferguson, B. J., Lin, M. H., & Gresshoff, P. M. (2013). Regulation of legume nodulation by acidic growth conditions. Plant Signaling & Behavior, 8(3), e23426.CrossRefGoogle Scholar
  17. Ferla, M. P., & Patrick, W. M. (2014). Bacterial methionine biosynthesis. Microbiology, 160, 1571–1584.CrossRefPubMedGoogle Scholar
  18. Fry, J., Wood, M., & Poole, P. S. (2001). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Molecular Plant-Microbe Interactions 14(8), 1016–1025.CrossRefPubMedGoogle Scholar
  19. Fuhrer, T., Fischer, E., & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, 187(5), 1581–1590.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Futai, M. (1973). Membrane d-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry, 12(13), 2468–2474.CrossRefPubMedGoogle Scholar
  21. Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 68(2), 280–300.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Geddes, B. A., González, J. E., & Oresnik, I. J. (2014). Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. Molecular Plant-Microbe Interactions, 27(12), 1307–1317.CrossRefPubMedGoogle Scholar
  23. Geddes, B. A., & Oresnik, I. J. (2014). Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Canadian Journal of Microbiology, 60(8), 491–507.CrossRefPubMedGoogle Scholar
  24. Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T. M., & Thomas-Oates, J. E. (1999). The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Molecular microbiology, 32(1), 63–73.CrossRefPubMedGoogle Scholar
  25. Gibson, K. E., Kobayashi, H., & Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics, 42(1), 413–441.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Glenn, A. R., & Dilworth, M. J. (1994). The life of root nodule bacteria in the acidic underground. FEMS Microbiology Letters, 123(1–2), 1–9.CrossRefGoogle Scholar
  27. Glenn, A. R., Reeve, W. G., Tiwari, R. P., & Dilworth, M. J. (1999). Acid tolerance in root nodule bacteria. Novartis Foundation Symposium, 221, 112–126.PubMedGoogle Scholar
  28. Graham, S. F., Chevallier, O. P., Kumar, P., Türkoğlu, O., & Bahado-Singh, R. O. (2016). High resolution metabolomic analysis of ASD human brain uncovers novel biomarkers of disease. Metabolomics, 12(4), 62.CrossRefGoogle Scholar
  29. Hellweg, C., Puhler, A., & Weidner, S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiology, 9(1), 37.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hunke, S., Keller, R., & Muller, V. S. (2012). Signal integration by the Cpx-envelope stress system. FEMS Microbiology Letters, 326(1), 12–22.CrossRefPubMedGoogle Scholar
  31. Jiang, G., Krishnan, A. H., Kim, Y. W., Wacek, T. J., & Krishnan, H. B. (2001). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). Journal of Bacteriology, 183(8), 2595–2604.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews Microbiology, 5(8), 619–633.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kistler, W. S., & Lin, E. C. (1971). Anaerobic l-glycerophosphate dehydrogenase of Escherichia coli: Its genetic locus and its physiological role. Journal of Bacteriology, 108(3), 1224–1234.PubMedPubMedCentralGoogle Scholar
  34. Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55(1), 459–493.CrossRefPubMedGoogle Scholar
  35. Kohler, P. R., Zheng, J. Y., Schoffers, E., & Rossbach, S. (2010). Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation. Applied and Environmental Microbiology, 76(24), 7972–7980.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Law, J. H., & Slepecky, R. A. (1961). Assay of Poly-beta-hydroxybutyric acid. Journal of Bacteriology, 82(1), 33–36.PubMedPubMedCentralGoogle Scholar
  37. Leonardo, M. R., Dailly, Y., & Clark, D. P. (1996). Role of NAD in regulating the adhE gene of Escherichia coli. Journal of Bacteriology, 178(20), 6013–6018.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lund, P., Tramonti, A., & De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 38(6), 1091–1125.CrossRefPubMedGoogle Scholar
  39. Mendrygal, K. E., & Gonzalez, J. E. (2000). Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology, 182(3), 599–606.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451–480.PubMedPubMedCentralGoogle Scholar
  41. O’Hara, G. W., & Glenn, A. R. (1994). The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Archives of Microbiology, 161(4), 286–292.CrossRefPubMedGoogle Scholar
  42. O’Hara, G. W., Goss, T. J., Dilworth, M. J., & Glenn, A. R. (1989). Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Applied and Environmental Microbiology, 55(8), 1870–1876.PubMedPubMedCentralGoogle Scholar
  43. Paczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W., & Noack, S. (2012). Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories, 11(1), 122.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Poole, P. S., Blyth, A., Reid, C. J., & Walters, K. (1994). Myo-inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae. Microbiology, 140(10), 2787–2795.CrossRefGoogle Scholar
  45. Povolo, S., & Casella, S. (2009). Effect of poly-3-hydroxybutyrate synthase mutation on the metabolism of Ensifer (formerly Sinorhizobium) meliloti. Journal of Basic Microbiology, 49(2), 178–186.CrossRefPubMedGoogle Scholar
  46. Quelas, J. I., Mongiardini, E. J., Pérez-Giménez, J., Parisi, G., & Lodeiro, A. R. (2013). Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110. Journal of Bacteriology, 195(14), 3145–3155.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Reeve, W. G., Tiwari, R. P., Guerreiro, N., Stubbs, J., Dilworth, M. J., Glenn, A. R., et al. (2004). Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. Journal of Molecular Microbiology and Biotechnology, 7(3), 140–147.CrossRefPubMedGoogle Scholar
  48. Reeve, W. G., Tiwari, R. P., Wong, C. M., Dilworth, M. J., & Glenn, A. R. (1998). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology, 144, 3335–3342.CrossRefPubMedGoogle Scholar
  49. Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R., & Aguilar, O. M. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. Journal of Bacteriology, 182(6), 1748–1753.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Santos, M. R., Cosme, A. M., Becker, J. D., Medeiros, J. M., Mata, M. F., & Moreira, L. M. (2010). Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti. BMC Microbiology, 10, 180.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sardesai, N., & Babu, C. R. (2000). Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains. Folia MicroBiologica, 45(2), 177–182.CrossRefPubMedGoogle Scholar
  52. Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiology Reviews, 40(1), 133–159.CrossRefPubMedGoogle Scholar
  53. Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14, 799.CrossRefGoogle Scholar
  54. Tavernier, P., Portais, J., Nava, S., Courtois, J., Courtois, B., & Barbotin, J. (1997). Exopolysaccharide and Poly-(beta)-Hydroxybutyrate coproduction in two Rhizobium meliloti strains. Applied and Environmental Microbiology, 63(1), 21–26.PubMedPubMedCentralGoogle Scholar
  55. Tiwari, R. P., Reeve, W. G., Dilworth, M. J., & Glenn, A. R. (1996a). Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 142, 1693–1704.CrossRefPubMedGoogle Scholar
  56. Tiwari, R. P., Reeve, W. G., Dilworth, M. J., & Glenn, A. R. (1996b). An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology, 142, 601–610.CrossRefPubMedGoogle Scholar
  57. Tiwari, R. P., Reeve, W. G., Fenner, B. J., Dilworth, M. J., Glenn, A. R., & Howieson, J. G. (2004). Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis. Journal of molecular Microbiology and Biotechnology, 7(3), 133–139.CrossRefPubMedGoogle Scholar
  58. Trevelyan, W. E., Forrest, R. S., & Harrison, J. S. (1952). Determination of yeast carbohydrates with the anthrone reagent. Nature, 170(4328), 626–627.CrossRefPubMedGoogle Scholar
  59. Uchino, K., Saito, T., Gebauer, B., & Jendrossek, D. (2007). Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. Journal of Bacteriology, 189(22), 8250–8256.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martinez-Romero, E., & Werner, D. (2003). Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Molecular Plant-Microbe Interactions, 16(2), 159–168.CrossRefPubMedGoogle Scholar
  61. Vogt, S. L., & Raivio, T. L. (2012). Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiology Letters, 326(1), 2–11.CrossRefPubMedGoogle Scholar
  62. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0: a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–133.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968–989.PubMedPubMedCentralGoogle Scholar
  64. Zevenhuizen, L. P. (1981). Cellular glycogen, beta-1,2,-glucan, poly beta-hydroxybutyric acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie van Leeuwenhoek, 47(6), 481–497.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Walter Omar Draghi
    • 1
    Email author
  • María Florencia Del Papa
    • 1
  • Aiko Barsch
    • 2
  • Francisco J. Albicoro
    • 1
  • Mauricio J. Lozano
    • 1
  • Alfred Pühler
    • 2
  • Karsten Niehaus
    • 2
  • Antonio Lagares
    • 1
  1. 1.IBBM - Instituto de Biotecnología y Biología Molecular, CCT La Plata, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.CeBiTec - Centrum für BiotechnologieUniversität BielefeldBielefeldGermany

Personalised recommendations