Metabolomics

, 13:38

Micro-NMR elucidates altered metabolites in the Parkinson’s disease-related catp-6 genotype of Caenorhabditis elegans

  • Christoph Trautwein
  • Neil MacKinnon
  • Jan G. Korvink
Original Article

DOI: 10.1007/s11306-017-1172-4

Cite this article as:
Trautwein, C., MacKinnon, N. & Korvink, J.G. Metabolomics (2017) 13: 38. doi:10.1007/s11306-017-1172-4
  • 157 Downloads

Abstract

Introduction

A severe form of Parkinson’s disease (PD) is the Kufor-Rakeb syndrome. Here mutations in the ATP13A2 (PARK9) gene lead to an early juvenile-onset Parkinsonism often accompanied by dementia. ATP13A2 encodes a lysosomal P-type ATPase. Its ortholog in Caenorhabditis elegans is the catp-6 gene where phenotypes with mutations in the alleles ok3473 and tm3190 show high mortality and low reproduction.

Objectives

Since PD is difficult to study in humans we wanted to investigate the potential to use C. elegans as model for the Kufor-Rakeb syndrome. As it is difficult to obtain enough catp-6 mutant worms for standard NMR metabolic profiling, we explored focused ultrasonication extraction and miniaturized NMR as techniques to overcome this limitation.

Methods

One- and two-dimensional NMR experiments (1H, JRES, TOCSY) were performed with a commercial high-resolution magic angle spinning (HR-MAS) probe (25 µL sample volume). Significant features were identified through analysis of variance (ANOVA, p < 0.05), volcano plots (p < 0.05, fold change >1.5), PCA, and PLS-DA.

Results

Assignment of statistically relevant peaks resulted in the identification of twenty altered metabolites. Previous studies on catp-6 mutants identified strong morphological and functional changes in their mitochondria. Our findings of altered TCA metabolites (fumarate, succinate), branched-chain amino acids (leucine, isoleucine and valine) and nucleotides (AMP, ATP and GTP), formate and hypoxanthine appear to support these findings. Highest fold changes (< −5) in wildtype relative to both catp-6 strains were found for GTP. Formic acid is known to inhibit the mitochondrial respiratory chain complex IV and high hypoxanthine in catp-6 indicates an increased nucleotide salvage pathway. Alterations in most of the remaining metabolites may be the result of the recently discovered activation of AMPK (AMP-activated protein kinase) and inhibition of mTOR (mechanistic target of rapamycin) pathways together with a catabolic response to recover energy production.

Conclusions

If the effect of the catp-6 mutation in C. elegans at the level of metabolites is correlated to the metabolic dysfunction in the human PARK9 ortholog, then it may be possible to uncover the molecular mechanism behind Parkinsonism and the Kufor-Rakeb syndrome.

Keywords

Neurodegenerative disorders Lyosomal impairement Mitochondria HR-MAS Metabolomics Chemometrics 

Supplementary material

11306_2017_1172_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4069 KB)

Funding information

Funder NameGrant NumberFunding Note
European Research Council
  • 290586

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christoph Trautwein
    • 1
  • Neil MacKinnon
    • 1
  • Jan G. Korvink
    • 1
  1. 1.Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations