Metabolomics

, 13:38 | Cite as

Micro-NMR elucidates altered metabolites in the Parkinson’s disease-related catp-6 genotype of Caenorhabditis elegans

  • Christoph Trautwein
  • Neil MacKinnon
  • Jan G. Korvink
Original Article

Abstract

Introduction

A severe form of Parkinson’s disease (PD) is the Kufor-Rakeb syndrome. Here mutations in the ATP13A2 (PARK9) gene lead to an early juvenile-onset Parkinsonism often accompanied by dementia. ATP13A2 encodes a lysosomal P-type ATPase. Its ortholog in Caenorhabditis elegans is the catp-6 gene where phenotypes with mutations in the alleles ok3473 and tm3190 show high mortality and low reproduction.

Objectives

Since PD is difficult to study in humans we wanted to investigate the potential to use C. elegans as model for the Kufor-Rakeb syndrome. As it is difficult to obtain enough catp-6 mutant worms for standard NMR metabolic profiling, we explored focused ultrasonication extraction and miniaturized NMR as techniques to overcome this limitation.

Methods

One- and two-dimensional NMR experiments (1H, JRES, TOCSY) were performed with a commercial high-resolution magic angle spinning (HR-MAS) probe (25 µL sample volume). Significant features were identified through analysis of variance (ANOVA, p < 0.05), volcano plots (p < 0.05, fold change >1.5), PCA, and PLS-DA.

Results

Assignment of statistically relevant peaks resulted in the identification of twenty altered metabolites. Previous studies on catp-6 mutants identified strong morphological and functional changes in their mitochondria. Our findings of altered TCA metabolites (fumarate, succinate), branched-chain amino acids (leucine, isoleucine and valine) and nucleotides (AMP, ATP and GTP), formate and hypoxanthine appear to support these findings. Highest fold changes (< −5) in wildtype relative to both catp-6 strains were found for GTP. Formic acid is known to inhibit the mitochondrial respiratory chain complex IV and high hypoxanthine in catp-6 indicates an increased nucleotide salvage pathway. Alterations in most of the remaining metabolites may be the result of the recently discovered activation of AMPK (AMP-activated protein kinase) and inhibition of mTOR (mechanistic target of rapamycin) pathways together with a catabolic response to recover energy production.

Conclusions

If the effect of the catp-6 mutation in C. elegans at the level of metabolites is correlated to the metabolic dysfunction in the human PARK9 ortholog, then it may be possible to uncover the molecular mechanism behind Parkinsonism and the Kufor-Rakeb syndrome.

Keywords

Neurodegenerative disorders Lyosomal impairement Mitochondria HR-MAS Metabolomics Chemometrics 

Supplementary material

11306_2017_1172_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4069 KB)

References

  1. Badilita, V., Fassbender, B., Kratt, K., Wong, A., Bonhomme, C., Sakellariou, D., et al. (2012). Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy. PLoS ONE, 7(8), e42848.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Braeckman, B. P. (2009). Intermediary metabolism. WormBook, 1–24.Google Scholar
  3. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.PubMedPubMedCentralGoogle Scholar
  4. Butler, J. A., Mishur, R. J., Bhaskaran, S., & Rea, S. L. (2013). A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging Cell, 12(1), 130–138.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Celardo, I., Martins, L. M., & Gandhi, S. (2014). Unravelling mitochondrial pathways to Parkinson’s disease. British Journal of Pharmacology, 171(8), 1943–1957.CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Cuyper, C., Vanfleteren, J. R. (1982). Oxygen consumption during development and aging of the nematode Caenorhabditis elegans. Comparative Biochemstry and Physiology A 73(29), 283–290.CrossRefGoogle Scholar
  7. Dehay, B., Bové, J., Rodríguez-Muela, N., Perier, C., Recasens, A., Boya, P., et al. (2010). Pathogenic lysosomal depletion in Parkinson’s disease. The Journal of Neuroscience, 30(37), 12535–12544.CrossRefPubMedGoogle Scholar
  8. Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., & Harrington, M. G. (2007). Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects. Amino Acids, 32(2), 213–224.CrossRefPubMedGoogle Scholar
  9. Fuchs, S., Bundy, J. G., Davies, S. K., Viney, J. M., Swire, J. S., et al. (2010). A metabolic signature of long life in Caenorhabditis elegans. BMC Biology, 8, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gasser, T. (2009). Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Reviews in Molecular Medicine, 11, e22.CrossRefPubMedGoogle Scholar
  11. Geier, F. M., Want, E. J., Leroi, A. M., & Bundy, J. G. (2011). Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Analytical Chemistry, 83(10), 3730–3736.CrossRefGoogle Scholar
  12. Hardie, D. G. (2004). The AMP-activated protein kinase pathway - New players upstream and downstream. Journal of Cell Science, 117(23), 5479–5487.CrossRefPubMedGoogle Scholar
  13. Indo, Y., Kitano, A., Endo, F., Akaboshi, I., & Matsuda, I. (1987). Altered kinetic properties of the branched-chain alpha-keto acid dehydrogenase complex due to mutation of the beta-subunit of the branched-chain alpha-keto acid decarboxylase (e1) component in lymphoblastoid cells derived from patients with maple syrup urine disease. The Journal of Clinical Investigation, 80(1), 63–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Johnson, J. R., Jenn, R. C., Barclay, J. W., Burgoyne, R. D., & Morgan, A. (2010). Caenorhabditis elegans: A useful tool to decipher neurodegenerative pathways. Biochemical Society Transactions, 38, 559–563.CrossRefPubMedGoogle Scholar
  15. Koyanagi, M., Asahara, S.-i., Matsuda, T., Hashimoto, N., Shigeyama, Y., & Shibutani, Y., et al. (2011). Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS ONE, 6(8), e23238.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lees, A. J., Hardy, J., & Revesz, T. (2009). Parkinson’s disease. Lancet, 373(9680), 2055–2066.CrossRefPubMedGoogle Scholar
  17. Lubbe, S., & Morris, H. R. (2014). Recent advances in Parkinson’s disease genetics. Journal of Neurology, 261(2), 259–266.CrossRefPubMedGoogle Scholar
  18. Malkus, K. A., Tsika, E., & Ischiropoulos, H. (2009). Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: How neurons are lost in the bermuda triangle. Molecular Neurodegeneration, 4(1), 24.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Martin, F.-P. J., Spanier, B., Collino, S., Montoliu, I., Kolmeder, C., Giesbertz, P., et al. (2011). Metabotyping of Caenorhabditis elegans and their culture media revealed unique metabolic phenotypes associated to amino acid deficiency and insulin-like signaling. Journal of Proteome Research, 10(3), 990–1003.CrossRefPubMedGoogle Scholar
  20. McCulloch, D., & Gems, D. (2003). Body size, insulin/IGF signaling and aging in the nematode Caenorhabditis elegans. Experimental Gerontology, 38(1), 129–136.CrossRefPubMedGoogle Scholar
  21. Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016–1023.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Morita, M., Gravel, S.-P., Chenard, V., Sikstrom, K., Zheng, L., Alain, et al. (2013). mTORC1 controls mitochondrial activity and biogenesis through 4e-BP-dependent translational regulation. Cell Metabolism, 18(5), 698–711.CrossRefPubMedGoogle Scholar
  23. Nicholls, P. (1975). Formate as an inhibitor of cytochrome c oxidase. Biochemical and Biophysical Research Communications, 67(2), 610–616.CrossRefPubMedGoogle Scholar
  24. Pujol, C., Bratic-Hench, I., Sumakovic, M., Hench, J., Mourier, A., Baumann, et al. (2013). Succinate dehydrogenase upregulation destabilize complex I and limits the lifespan of gas-1 mutant. PLoS ONE, 8(3), e59493.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ramirez, A., Heimbach, A., Gruendemann, J., Stiller, B., Hampshire, D., Cid, L. P., et al. (2006). Hereditary Parkinsonism with dementia is caused by mutations in ATP13a2, encoding a lysosomal type 5 p-type ATPase. Nature Genetics, 38(10), 1184–1191.CrossRefPubMedGoogle Scholar
  26. Schapira, A. (2013). Recent developments in biomarkers in Parkinson disease. Current Opinion in Neurology, 26(4), 395–400.CrossRefGoogle Scholar
  27. Spengler, N., Moazenzadeh, A., Meier, R. C., Badilita, V., Korvink, J. G., & Wallrabe, U. (2014). Micro-fabricated helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. Journal of Micromechanics and Microengineering, 24(3), 034004.CrossRefGoogle Scholar
  28. Thomas, S. C., Alhasawi, A., Auger, C., Omri, A., & Appanna, V. D. (2016). The role of formate in combatting oxidative stress. Antonie van Leeuwenhoek, 109(2), 263–271.CrossRefPubMedGoogle Scholar
  29. Tsuruoka, M., Hara, J., Hirayama, A., Sugimoto, M., Soga, T., Shankle, W. R., et al. (2013). Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis, 34(19), 2865–2872.PubMedGoogle Scholar
  30. Wender, N. (2013). Cellular function and toxicity of the Parkinson’s disease-related genes α-synuclein and catp-6 in C. elegans. PhD thesis, http://www.ediss.uni-goettingen.de/handle/11858/00-1735-0000-0015-97E4-A.
  31. Wong, A., Li, X., Molin, L., Solari, F., Elena-Herrmann, B., & Sakellariou, D. (2014). µhigh resolution- magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans. Analytical Chemistry, 86(12), 6064–6070.CrossRefPubMedGoogle Scholar
  32. Wong, A., Li, X., & Sakellariou, D. (2013). Refined magic-angle coil spinning resonator for nanoliter NMR spectroscopy: Enhanced spectral resolution. Analytical Chemistry, 85(4), 2021–2026.CrossRefPubMedGoogle Scholar
  33. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0 - A comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., & Sabatini, D. M. (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science, 334(6056), 678–683.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 12(1), 21–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christoph Trautwein
    • 1
  • Neil MacKinnon
    • 1
  • Jan G. Korvink
    • 1
  1. 1.Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations