, 12:176 | Cite as

Chilling slows anaerobic metabolism to improve anoxia tolerance of insects

  • Leigh BoardmanEmail author
  • Jesper G. Sørensen
  • Vladimír Koštál
  • Petr Šimek
  • John S. Terblanche
Short Communication



Insects are renowned for their ability to survive anoxia. Anoxia tolerance may be enhanced during chilling through metabolic suppression.


Here, the metabolomic response of insects to anoxia, both with and without chilling, for different durations (12–36 h) was examined to assess the potential cross-tolerance mechanisms.


Chilling during anoxia (cold anoxia) significantly improved survival relative to anoxia at warmer temperatures. Reduced intermediate metabolites and increased lactic acid, indicating a switch to anaerobic metabolism, were characteristic of larvae in anoxia.


Anoxia tolerance was correlated survival improvements after cold anoxia were correlated with a reduction in anaerobic metabolism.


Anoxia Hypoxia Cold Lactic acid False codling moth 



XSIT kindly provided larvae. We are grateful for comments by anonymous referees that helped improve the work.


This research was completed with financial support from International Atomic Energy Agency (CRP), Hortgro Stellenbosch and Citrus Research International to JST and metabolomics analysis was supported by the Czech Science Foundation, No. 13-18509S to PS. LB was supported by National Research Foundation (NRF) DST Postdoctoral fellowship, JGS was supported by a Sapere Aude DFF-Starting grant from The Danish Council for Independent Research| Natural Sciences and JST was supported by NRF Incentive Funding and Sub-Committee B (Stellenbosch University).

Compliance with ethical standards

Conflict of interest

L Boardman, J. Sørensen, V. Kostal, P. Simek and J. Terblanche have no conflict of interest to declare.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent and ethical approval was not required for this study.

Supplementary material

11306_2016_1119_MOESM1_ESM.pdf (413 kb)
Supplementary material 1 (PDF 413 kb)


  1. Benasayag-Meszaros, R., Risley, M. G., Hernandez, P., Fendrich, M., & Dawson-Scully, K. (2015). Pushing the limit: Examining factors that affect anoxia tolerance in a single genotype of adult D. melanogaster. Scientific Reports, 5, 9204. doi: 10.1038/srep09204.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boardman, L., Sørensen, J. G., Kostál, V., Simek, P., & Terblanche, J. S. (2016). Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Scientific Reports, 6, 32856. doi: 10.1038/srep32856.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boardman, L., Sørensen, J. G., & Terblanche, J. S. (2013). Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. Journal of Insect Physiology, 59, 781–794. doi: 10.1016/j.jinsphys.2013.05.005.CrossRefPubMedGoogle Scholar
  4. Boardman, L., Sørensen, J. G., & Terblanche, J. S. (2015). Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Journal of Insect Physiology, 82, 75–84. doi: 10.1016/j.jinsphys.2015.09.001.CrossRefPubMedGoogle Scholar
  5. Chinopoulos, C. (2013). Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. Journal of Neuroscience Research, 91(8), 1030–1043. doi: 10.1002/jnr.23196.CrossRefPubMedGoogle Scholar
  6. Feala, J. D., Coquin, L., McCulloch, A. D., & Paternostro, G. (2007). Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Molecular Systems Biology, 3(99), 99. doi: 10.1038/msb4100139.PubMedPubMedCentralGoogle Scholar
  7. Gäde, G. (1985). Anaerobic energy metabolism. In K. H. Hoffmann (Ed.), Environmental Physiology and Biochemistry of Insects. Heidelberg: Springer. doi: 10.1007/978-94-007-1896-8.Google Scholar
  8. Haddad, G. G. (2006). Tolerance to low O2: lessons from invertebrate genetic models. Experimental Physiology, 91(2), 277–282. doi: 10.1113/expphysiol.2005.030767.CrossRefPubMedGoogle Scholar
  9. Harrison, J., Frazier, M. R., Henry, J. R., Kaiser, A., Klok, C. J., & Rascón, B. (2006). Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology & Neurobiology, 154(1–2), 4–17. doi: 10.1016/j.resp.2006.02.008.CrossRefGoogle Scholar
  10. Hoback, W. W. (2012). Ecological and experimental exposure of insects to anoxia reveals surprising tolerance. In A. V. Altenbach, J. M. Bernhard, & J. Seckbach (Eds.), Evidence for eukaryote survival and paleontological strategies. Dordrecht: Springer. doi: 10.1007/978-94-007-1896-8.Google Scholar
  11. Hoback, W. W., Podrabsky, J. E., Higley, L. G., Stanley, D. W., & Hand, S. C. (2000). Anoxia tolerance of con-familial tiger beetle larvae is associated with differences in energy flow and anaerobiosis. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 170(4), 307–314. doi: 10.1007/s003600000104.CrossRefPubMedGoogle Scholar
  12. Hoback, W. W., Stanley, D. W., Higley, L. G., & Barnhart, M. C. (1998). Survival of immersion and anoxia by larval tiger beetles. Cicindela togata. The American Midland Naturalist, 140(1), 27–33. doi: 10.1674/0003-0031(1998)140[0027:SOIAAB]2.0.CO;2.
  13. Hofmeyr, J. H., Carpenter, J. E., Bloem, S., Slabbert, J. P., Hofmeyr, M., & Groenewald, S. S. (2015). Development of the sterile insect technique to suppress false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: research to implementation (Part 1). African Entomology, 23(1), 180–186. doi: 10.4001/003.023.0112.CrossRefGoogle Scholar
  14. Meidell, E. M. (1983). Diapause, aerobic and anaerobic metabolism in alpine, adult Melasoma Collaris (Coleoptera). Oikos, 41(2), 239–244.CrossRefGoogle Scholar
  15. Price, G. M. (1963). The effects of anoxia on metabolism in the adult housefly, Musca domestica. Biochemistry, 86, 372–378.CrossRefGoogle Scholar
  16. Rehr, S. S., Janzen, D. H., & Feeny, P. P. (1973). L-Dopa in legume seeds: a chemical barrier to insect attack. Science, 181(4094), 81–82. doi: 10.1126/science.181.4094.81.CrossRefPubMedGoogle Scholar
  17. Schilman, P. E., Waters, J. S., Harrison, J. F., & Lighton, J. R. B. (2011). Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster. Journal of Experimental Biology, 214(8), 1271–1275. doi: 10.1242/jeb.052357.CrossRefPubMedGoogle Scholar
  18. Soderstrom, E. L., Brandl, D. G., & Mackay, B. (1991). Responses of Cydia pomonella (L.) (Lepidoptera: Tortricidae) adults and eggs to oxygen deficient or carbon dioxide enriched atmospheres. Journal of Stored Product Research, 27(2), 95–101.CrossRefGoogle Scholar
  19. Soderstrom, E. L., Brandl, D. G., & Mackey, B. (1990). Responses of codling moth (Lepidoptera:Tortricidae) life stages to high carbon dioxide or low oxygen atmospheres. Journal of Economic Entomology. doi: 10.1093/jee/83.2.472472-475.Google Scholar
  20. Storey, K. B., & Storey, J. M. (2005). Oxygen limitation and metabolic rate depression. In K. B. Storey (Ed.), Functional Metabolism: Regulation and Adaptation (pp. 141–165). Hoboken: Wiley.Google Scholar
  21. Storey, K. B., & Storey, J. M. (2010). Oxygen: stress and adaptation in cold hardy insects. In D. L. Denlinger & R. E. J. Lee (Eds.), Low Temperature Biology of Insects (pp. 141–165). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Verberk, W. C. E. P., Overgaard, J., Ern, R., Bayley, M., Wang, T., Boardman, L., et al. (2016). Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 64–78. doi: 10.1016/j.cbpa.2015.10.020.CrossRefGoogle Scholar
  23. Weyel, W., & Wegener, G. (1996). Adenine nucleotide metabolism during anoxic and postanoxic recovery in insects. Experientia, 52, 474–480.CrossRefGoogle Scholar
  24. Whiting, D. C., Foster, S. P., Van Den Heuvel, J., & Maindonald, J. H. (1992). Comparative mortality responses of four Tortricid (Lepidoptera) species to a low oxygen controlled atmosphere. Journal of Economic Entomology, 85(6), 2305–2309. doi: 10.1093/jee/85.6.2305.CrossRefGoogle Scholar
  25. Wise, D. R., Ward, P. S., Shay, J. E. S., Cross, J. R., Gruber, J. J., Sachdeva, U. M., et al. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19611–19616. doi: 10.1073/pnas.1117773108.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257. doi: 10.1093/nar/gkv380.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Conservation Ecology and Entomology, Centre for Invasion BiologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.Section for Genetics, Ecology & Evolution, Department of BioscienceAarhus UniversityAarhus CDenmark
  3. 3.Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  4. 4.Department of Entomology & NematologyUniversity of FloridaGainesvilleUSA

Personalised recommendations