Advertisement

Metabolomics

, 12:156 | Cite as

Serum metabolomics profile of type 2 diabetes mellitus in a Brazilian rural population

  • Kallyandra Padilha
  • Gabriela Venturini
  • Thiago de Farias Pires
  • Andréa R. V. R. Horimoto
  • Pamella Araujo Malagrino
  • Tamiris Carneiro Gois
  • Bianca Kiers
  • Camila Maciel Oliveira
  • Rafael de Oliveira Alvim
  • Celso Blatt
  • José Eduardo Krieger
  • Alexandre Costa PereiraEmail author
Original Article

Abstract

Introduction

The development of common forms of diabetes comes from the interaction between environmental and genetic factors, and the consequences of poor glycemic control in these patients could result in several complications. Metabolomic studies for type 2 diabetes mellitus in serum/plasma have reported changes in numerous metabolites, which might be considered possible targets for future mechanistic research. However, the specific role of a particular metabolite as cause or consequence of diabetes derangements is difficult to establish.

Objectives

As type 2 diabetes is a disease that changes the metabolic profile in several levels, this work aimed to compare the metabolomic profiles of type 2 diabetes mellitus and non-diabetic participants. In addition, we exploited our family-based study design to bring a better understanding of the causal relationship of identified metabolites and diabetes.

Methods

In the current study, population based metabolomics was applied in 939 subjects from the Baependi Heart Study. Participants were separated into two groups: diabetic (77 individuals) and non-diabetic (862 individuals), and the metabolic profile was performed by GC/MS technique.

Results

We have identified differentially concentrated metabolites in serum of diabetic and non-diabetic individuals. We identified 72 metabolites up-regulated in type 2 diabetes mellitus compared to non-diabetics. It was possible to recapitulate the main pathways that the literature shows as changed in diabetes. Also, based on metabolomic profile, we separated pre-diabetic individuals (with glucose concentration between 100–125 mg/dL) from non-diabetics and diabetics. Finally, using heritability analysis, we were able to suggest metabolites in which altered levels may precede diabetic development.

Conclusion

Our data can be used to derive a better understanding of the causal relationship of the observed associations and help to prioritize diabetes-associated metabolites for further work.

Keywords

Metabolomics Heritability Type 2 diabetes mellitus Gas chromatography–mass spectrometry 

Notes

Acknowledgments

We acknowledge the Agilent Technologies Brasil Ltda, Life Sciences & Chemical Analysis for the use of the GC/MS system (7890B gas chromatograph coupled to a mass selective detector model 5977A-Agilent) for support data collection.

Funding information

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2012/05447-0, 2012/12042-7, 2013-17368-0, PROADI_ SUS Project nº 25000.180664/2011-35).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were carried out in accordance with the ethics committee of the Hospital das Clinicas, University of São Paulo, Brazil (protocol number 3759/12/015), approved the study protocol.

Informed consent

All participants signed a written informed consent.

Supplementary material

11306_2016_1107_MOESM1_ESM.pdf (21 kb)
Figure S1 PCA scores plot based on the GC/MS spectra of serum samples obtained from diabetic patients treated and diabetic patients not treated with hypoglycemic medication. (PDF 20 kb)
11306_2016_1107_MOESM2_ESM.tiff (1.3 mb)
Figure S2 Samples first principal component scores distributed by the day of analysis. The red points represent the diabetic samples subject. (TIFF 1346 kb)
11306_2016_1107_MOESM3_ESM.tiff (2.1 mb)
Figure S3 Metabolites concentration before (A) and after (B) LOESS normalization according to injection order and day of analysis. (TIFF 2194 kb)
11306_2016_1107_MOESM4_ESM.tiff (1.4 mb)
Figure S4 Representativity of significant metabolites found by polygenic analysis. The blue side represent diabetic group, and the red side represent the non-diabetic group. (TIFF 1426 kb)
11306_2016_1107_MOESM5_ESM.docx (15 kb)
Table S1 Main biological functions disturbed relate with metabolites found by PLS-DA to diabetic, pre-diabetic and non diabetic participants. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)
11306_2016_1107_MOESM6_ESM.xlsx (15 kb)
Table S2 Heritability (h2) estimates (in percentage) for each metabolite, unadjusted (Model 1), adjusted for age and sex (Model 2), and adjusted for age, sex and T2DM (Model 3). (XLSX 15 kb)
11306_2016_1107_MOESM7_ESM.docx (15 kb)
Table S3 Main biological functions disturbed by proximal metabolites. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)
11306_2016_1107_MOESM8_ESM.docx (15 kb)
Table S4 Main biological functions related to distal metabolites. In #molecules column is the number of metabolites present in each pathway. (DOCX 15 kb)

References

  1. Chevalier, S., Marliss, E. B., Morais, J. A., Lamarche, M., & Gougeon, R. (2005). Whole-body protein anabolic response is resistant to the action of insulin in obese women. The American Journal of Clinical Nutrition, 82(2), 355–365.PubMedGoogle Scholar
  2. de Oliveira, C. M., Pereira, A. C., de Andrade, M., Soler, J. M., & Krieger, J. E. (2008). Heritability of cardiovascular risk factors in a Brazilian population: Baependi heart study. BMC Medical Genetics, 9, 32. doi: 10.1186/1471-2350-9-32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. doi: 10.1021/ac051632c.CrossRefPubMedGoogle Scholar
  4. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi: 10.1038/nprot.2011.335.CrossRefPubMedGoogle Scholar
  5. Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. The Journal of Nutrition, 135, 1539S–1546S.PubMedGoogle Scholar
  6. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.CrossRefPubMedGoogle Scholar
  7. Fiehn, O., Garvey, W. T., Newman, J. W., Lok, K. H., Hoppel, C. L., & Adams, S. H. (2010). Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One, 5(12), e15234. doi: 10.1371/journal.pone.0015234.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K.-P., Mitchell, M. W., Nakhle, P. J., et al. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5(5), e10883. doi: 10.1371/journal.pone.0010883.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Horimoto, A. R. V. R., Giolo, S. R., Oliveira, C. M., Alvim, R. O., Soler, J. P., de Andrade, M., et al. (2011). Heritability of physical activity traits in Brazilian families: The Baependi Heart Study. BMC Medical Genetics, 12(1), 155. doi: 10.1186/1471-2350-12-155.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Mikaelyan, N. P., Nguen, H. Z., & Terent’ev, A. A. (2015). Metabolic abnormalities in erythrocyte membranes and liver tissue homogenates in experimental diabetes mellitus. Bulletin of Experimental Biology and Medicine, 159(2), 197–200. doi: 10.1007/s10517-015-2921-x.CrossRefPubMedGoogle Scholar
  11. Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2013). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. doi: 10.1016/j.cmet.2009.02.002.A.CrossRefGoogle Scholar
  12. Padberg, I., Peter, E., González-Maldonado, S., Witt, H., Mueller, M., Weis, T., et al. (2014). A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One, 9(1), e85082. doi: 10.1371/journal.pone.0085082.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. doi: 10.1038/nature11450.CrossRefPubMedGoogle Scholar
  14. Shah, S. H., Crosslin, D. R., Haynes, C. S., Nelson, S., Turer, C. B., Stevens, R. D., et al. (2012). Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia, 55(2), 321–330. doi: 10.1007/s00125-011-2356-5.CrossRefPubMedGoogle Scholar
  15. Sharma, A., Chavali, S., Mahajan, A., Tabassum, R., Banerjee, V., Tandon, N., et al. (2005). Genetic association, post-translational modification, and protein-protein interactions in type 2 diabetes mellitus. Molecular & Cellular Proteomics: MCP, 4(8), 1029–1037. doi: 10.1074/mcp.M500024-MCP200.CrossRefGoogle Scholar
  16. Suhre, K. (2014). Metabolic profiling in diabetes. The Journal of Endocrinology, 221(3), R75–R85. doi: 10.1530/JOE-14-0024.CrossRefPubMedGoogle Scholar
  17. Swan, J. W., Anker, S. D., Walton, C., Godsland, I. F., Clark, A. L., Leyva, F., et al. (1997). Insulin resistance in chronic heart failure: Relation to severity and etiology of heart failure. Journal of the American College of Cardiology, 30(2), 527–532. doi: 10.1016/S0735-1097(97)00185-X.CrossRefPubMedGoogle Scholar
  18. Trifonova, O., Lokhov, P., & Archakov, A. (2013). Postgenomics diagnostics: metabolomics approaches to human blood profiling. OMICS: A Journal of Integrative Biology, 17(11), 550–559. doi: 10.1089/omi.2012.0121.CrossRefPubMedGoogle Scholar
  19. van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC genomics, 7, 142. doi: 10.1186/1471-2164-7-142.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang, S., Kuo, C., & Tseng, Y. J. (2013). Batch normalizer: A fast total abundance regression calibration method to simultaneouly adjust batch and injection order effects in liquid chromatography/time-of-fligth mass spectrometry-based metabolomics data and comparison with current calibration meth. Analytical Chemistry, 85, 1037–1046.CrossRefPubMedGoogle Scholar
  21. WHO. (2003). Screening for type 2 diabetes.Google Scholar
  22. WHO. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications.Google Scholar
  23. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660. doi: 10.1093/nar/gkp356.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Xu, F., Tavintharan, S., Sum, C. F., Woon, K., Lim, S. C., & Ong, C. N. (2013). Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. The Journal of Clinical Endocrinology and Metabolism, 98(6), E1060–E1065. doi: 10.1210/jc.2012-4132.CrossRefPubMedGoogle Scholar
  25. Yagil, C., Barkalifa, R., Sapojnikov, M., Wechsler, A., Ben-Dor, D., Weksler-Zangen, S., et al. (2007). Metabolic and genomic dissection of diabetes in the Cohen rat. Physiological Genomics, 29(2), 181–192. doi: 10.1152/physiolgenomics.00210.2006.CrossRefPubMedGoogle Scholar
  26. Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364. doi: 10.1021/ac8019366.CrossRefPubMedGoogle Scholar
  27. Zeng, M., Che, Z., Liang, Y., Wang, B., Chen, X., Li, H., et al. (2009). GC–MS based plasma metabolic profiling of type 2 diabetes mellitus. Chromatographia, 69(9–10), 941–948. doi: 10.1365/s10337-009-1040-0.CrossRefGoogle Scholar
  28. Zhang, A. H., Qiu, S., Xu, H. Y., Sun, H., & Wang, X. J. (2014). Metabolomics in diabetes. Clinica Chimica Acta, 429, 106–110. doi: 10.1016/j.cca.2013.11.037.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kallyandra Padilha
    • 1
  • Gabriela Venturini
    • 1
  • Thiago de Farias Pires
    • 1
  • Andréa R. V. R. Horimoto
    • 1
  • Pamella Araujo Malagrino
    • 1
  • Tamiris Carneiro Gois
    • 1
  • Bianca Kiers
    • 1
  • Camila Maciel Oliveira
    • 1
  • Rafael de Oliveira Alvim
    • 1
  • Celso Blatt
    • 2
  • José Eduardo Krieger
    • 1
  • Alexandre Costa Pereira
    • 1
    Email author
  1. 1.Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor) Faculty of Medicine, University of São PauloSão PauloBrazil
  2. 2.Life Sciences & Chemical AnalysisAgilent Technologies Brasil LtdaBarueriBrazil

Personalised recommendations