Metabolomics

, 12:141 | Cite as

Integrated proteomics and metabolomics to unlock global and clonal responses of Eucalyptus globulus recovery from water deficit

  • Barbara Correia
  • Luis Valledor
  • Robert D. Hancock
  • Jenny Renaut
  • Jesús Pascual
  • Amadeu M. V. M. Soares
  • Glória Pinto
Original Article

Abstract

Background and aims

Water availability is well known for impacting productivity of Eucalyptus but comprehensive knowledge on cellular pathways involved in recovery and tolerance is scarce. In this context, we aimed to unveil putative mechanisms that account for drought recovery of E. globulus, and to identify specific strategies that make a clone more adapted to water deficit.

Methods

We resorted to comparative proteome (using difference gel electrophoresis) and metabolome [using Gas chromatography–mass spectrometry (GC–MS)] analyses in two E. globulus clones that exhibit physiological differences in their capacity to tolerate water shortage and restoration; also, interpretable networks were constructed coupled with previously assessed physiological matrices in order to interrogate the large datasets generated and develop a clear and integrative analysis.

Results

Our study enabled the separation and isolation of 2031 peptide spots, 217 of which were identified. GC–MS yielded the detection of 121 polar metabolites. Water shortage negatively affected photosynthesis, gene regulation, cell growth and secondary metabolites; enhanced photo protection, osmoprotection, and other defence-related pathways; and caused a shift from chloroplastic to mitochondrial energy generation. Recovery was characterised by upregulation of all previously described pathways. The analysis of the resilient clone AL-18, which presented a network very distinct from the responsive clone AL-10, reinforced the role of specific photosynthetic and defence-related proteins as key players in mediating drought tolerance and revealed new players: glutamine synthetase, malate dehydrogenase and isoflavone reductase-like protein.

Conclusion

This study provides a set of novel proteins and pathways involved in drought stress that represent potential drought tolerance markers for early selection of Eucalyptus.

Keywords

DIGE Forest tree GC–MS Plant Stress 

Notes

Acknowledgments

This research was supported by Fundo Europeu de Desenvolvimento Regional (FEDER) through Programa Operacional Fatores de Competitividade (COMPETE), and by National Funds through the Portuguese Foundation for Science and Technology (FCT) within the Project PTDC/AGR-CFL/112996/2009. FCT/MEC, through national funds, and co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020 provide financial support to Centre for Environmental and Marine Studies (CESAM – UID/AMB/50017). FCT also supported the fellowships of Barbara Correia (SFRH/BD/86448/2012) and Glória Pinto (SFRH/BPD/101669/2014). The James Hutton Institute receives support from by the Rural and Environment Science and Analytical Services Division of the Scottish Government. We thank Altri florestal for providing the plant material, and Lucinda Neves and Marta Pintó-Marijuan for technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that no competing interests exist.

Ethical approval

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2016_1088_MOESM1_ESM.docx (25 kb)
Supplementary Material 1 (DOCX 26 kb)
11306_2016_1088_MOESM2_ESM.xlsx (1.1 mb)
Supplementary Material 2 (XLSX 1098 kb)

References

  1. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396. doi:10.1104/pp.106.082040.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bernard, S. M., & Habash, D. Z. (2009). The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182(3), 608–620.CrossRefPubMedGoogle Scholar
  3. Brossa, R., Pintó-Marijuan, M., Francisco, R., López-Carbonell, M., Chaves, M. M., & Alegre, L. (2015). Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery. Planta, 241(4), 803–822. doi:10.1007/s00425-014-2221-0.CrossRefPubMedGoogle Scholar
  4. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. doi:10.1071/Fp02076.CrossRefGoogle Scholar
  5. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20.CrossRefPubMedGoogle Scholar
  6. Coopman, R. E., Jara, J. C., Bravo, L. A., Sáez, K. L., Mella, G. R., & Escobar, R. (2008). Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electronic Journal of Biotechnology, 11(2), 30–39.CrossRefGoogle Scholar
  7. Correia, B., Pintó-Marijuan, M., Castro, B. B., Brossa, R., López-Carbonell, M., & Pinto, G. (2014a). Hormonal dynamics during recovery from drought in two Eucalyptus globulus genotypes: From root to leaf. Plant Physiology and Biochemistry, 82, 151–160. doi:10.1016/j.plaphy.2014.05.016.CrossRefPubMedGoogle Scholar
  8. Correia, B., Pintó-Marijuan, M., Neves, L., Brossa, R., Dias, M. C., Costa, A., et al. (2014b). Water stress and recovery in the performance of two Eucalyptus globulus clones: Physiological and biochemical profiles. Physiologia Plantarum, 150(4), 580–592.CrossRefPubMedGoogle Scholar
  9. Costa e Silva, F., Shvaleva, A., Maroco, J. P., Almeida, M. H., Chaves, M. M., & Pereira, J. S. (2004). Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiology, 24(10), 1165–1172.CrossRefPubMedGoogle Scholar
  10. Feller, U., Anders, I., & Demirevska, K. (2008). Degradation of rubisco and other chloroplast proteins under abiotic stress. Gen Appl Plant Physiol, 34(1–2), 5–18.Google Scholar
  11. Foyer, C. H., Rasool, B., Davey, J. W., & Hancock, R. D. (2016). Cross-tolerance to biotic and abiotic stresses in plants: A focus on resistance to aphid infestation. Journal of Experimental Botany, 67(7), 2025–2037.CrossRefPubMedGoogle Scholar
  12. Freeman, J. S., Potts, B. M., Downes, G. M., Pilbeam, D., Thavamanikumar, S., & Vaillancourt, R. E. (2013). Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus. New Phytologist, 198(4), 1121–1134. doi:10.1111/nph.12237.CrossRefPubMedGoogle Scholar
  13. Furuhashi, T., Fragner, L., Furuhashi, K., Valledor, L., Sun, X., & Weckwerth, W. (2012). Metabolite changes with induction of Cuscuta haustorium and translocation from host plants. Journal of Plant Interactions, 7(1), 84–93.CrossRefGoogle Scholar
  14. Galmés, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in mediterranean plants with different growth forms. New Phytologist, 175(1), 81–93.CrossRefPubMedGoogle Scholar
  15. González, I., Lé Cao, K.-A., & Déjean, S. (2011). mixOmics: Omics data integration Project. http://www.mixomics.org
  16. Granda, V., Cuesta, C., Alvarez, R., Ordas, R., Centeno, M. L., Rodriguez, A., et al. (2011). Rapid responses of C14 clone of Eucalyptus globulus to root drought stress: Time-course of hormonal and physiological signaling. Journal of Plant Physiology, 168(7), 661–670. doi:10.1016/j.jplph.2010.09.015.CrossRefGoogle Scholar
  17. Kaminski, K. P., Kørup, K., Andersen, M. N., Sønderkær, M., Andersen, M. S., Kirk, H. G., et al. (2015). Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis. Theoretical and Applied Genetics, 128(11), 2143–2153.CrossRefPubMedCentralGoogle Scholar
  18. Katam, R., Sakata, K., Suravajhala, P., Pechan, T., Kambiranda, D. M., Naik, K. S., et al. (2016). Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. Journal of Proteomics, 143, 209–226. doi:10.1016/j.jprot.2016.05.031.CrossRefPubMedGoogle Scholar
  19. Kottapalli, K. R., Rakwal, R., Shibato, J., Burow, G., Tissue, D., Burke, J., et al. (2009). Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant, Cell and Environment, 32(4), 380–407.CrossRefPubMedGoogle Scholar
  20. Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593–1608.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu, D., Ford, K. L., Roessner, U., Natera, S., Cassin, A. M., Patterson, J. H., et al. (2013). Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics, 13(12–13), 2046–2062.CrossRefPubMedGoogle Scholar
  22. McKiernan, A. B., Hovenden, M. J., Brodribb, T. J., Potts, B. M., Davies, N. W., & O’Reilly-Wapstra, J. M. (2014). Effect of limited water availability on foliar plant secondary metabolites of two eucalyptus species. Environmental and Experimental Botany, 105, 55–64.CrossRefGoogle Scholar
  23. McKiernan, A. B., Potts, B. M., Brodribb, T. J., Hovenden, M. J., Davies, N. W., McAdam, S. A., et al. (2015). Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. Tree Physiology, 36(2), 133–147.PubMedGoogle Scholar
  24. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N., & Flagella, Z. (2007). Possible plant mitochondria involvement in cell adaptation to drought stress a case study: Durum wheat mitochondria. Journal of Experimental Botany, 58(2), 195–210.CrossRefPubMedGoogle Scholar
  25. Printz, B., Sergeant, K., Lutts, S., Guignard, Cd, Renaut, J., & Hausman, J. F. (2013). From tolerance to acute metabolic deregulation: contribution of proteomics to dig into the molecular response of alder species under a polymetallic exposure. Journal of Proteome Research, 12(11), 5160–5179.CrossRefGoogle Scholar
  26. Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132(2), 209–219. doi:10.1111/j.1399-3054.2007.00993.x.Google Scholar
  27. Scalabrin, E., Radaelli, M., Rizzato, G., Bogani, P., Buiatti, M., Gambaro, A., et al. (2015). Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses. Analytical and bioanalytical chemistry, 407(21), 6357–6368.CrossRefPubMedGoogle Scholar
  28. Sergeant, K., Spieß, N., Renaut, J., Wilhelm, E., & Hausman, J. F. (2011). One dry summer: A leaf proteome study on the response of oak to drought exposure. Journal of proteomics, 74(8), 1385–1395.CrossRefPubMedGoogle Scholar
  29. Shvaleva, A. L., Silva, F. C. E., Breia, E., Jouve, J., Hausman, J. F., Almeida, M. H., et al. (2006). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 26(2), 239–248. doi:10.1093/treephys/26.2.239.CrossRefPubMedGoogle Scholar
  30. Tomaz, T., Bagard, M., Pracharoenwattana, I., Lindén, P., Lee, C. P., Carroll, A. J., et al. (2010). Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiology, 154(3), 1143–1157.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Valdés, A. E., Irar, S., Majada, J. P., Rodriguez, A., Férnandez, B., & Pages, M. (2013). Drought tolerance acquisition in Eucalyptus globulus (Labill.): A research on plant morphology, physiology and proteomics. Journal of Proteomics, 79, 263–276. doi:10.1016/j.jprot.2012.12.019.CrossRefPubMedGoogle Scholar
  32. Valledor, L., Furuhashi, T., Hanak, A.-M., & Weckwerth, W. (2013). Systemic cold stress adaptation of Chlamydomonas reinhardtii. Molecular and Cellular Proteomics, 12(8), 2032–2047.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Valledor, L., & Jorrin, J. (2011). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 74(1), 1–18. doi:10.1016/j.jprot.2010.07.007.CrossRefPubMedGoogle Scholar
  34. Vítámvás, P., Prášil, I. T., Kosova, K., Planchon, S., & Renaut, J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics, 12(1), 68–85.CrossRefPubMedGoogle Scholar
  35. Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2, 1131–1145.CrossRefPubMedGoogle Scholar
  36. Warren, C. R., Aranda, I., & Cano, F. J. (2011a). Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics, 8(2), 186–200. doi:10.1007/s11306-011-0299-y.CrossRefGoogle Scholar
  37. Warren, C. R., Aranda, I., & Cano, F. J. (2011b). Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant, Cell and Environment, 34(10), 1609–1629. doi:10.1111/j.1365-3040.2011.02357.x.CrossRefGoogle Scholar
  38. Weckwerth, W., Wenzel, K., & Fiehn, O. (2004). Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 4(1), 78–83.CrossRefPubMedGoogle Scholar
  39. Wolosiuk, R. A., & Buchanan, B. B. (1978). Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system. Archives of Biochemistry and Biophysics, 189(1), 97–101. doi:10.1016/0003-9861(78)90119-4.CrossRefPubMedGoogle Scholar
  40. Zhang, N., & Portis, A. R. (1999). Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proceedings of the National Academy of Sciences United States of America, 96(16), 9438–9443.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Barbara Correia
    • 1
  • Luis Valledor
    • 2
  • Robert D. Hancock
    • 3
  • Jenny Renaut
    • 4
  • Jesús Pascual
    • 2
  • Amadeu M. V. M. Soares
    • 1
  • Glória Pinto
    • 1
  1. 1.Department of Biology & Centre for Environmental and Marine Studies (CESAM)University of AveiroAveiroPortugal
  2. 2.Plant Physiology, Department of Organisms and Systems BiologyUniversity of OviedoOviedoSpain
  3. 3.Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
  4. 4.Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and TechnologyBelvauxLuxembourg

Personalised recommendations