, 12:126 | Cite as

Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide

  • Daniel Stoessel
  • Cameron J. Nowell
  • Amy J. Jones
  • Lori Ferrins
  • Katherine M. Ellis
  • Jennifer Riley
  • Raphael Rahmani
  • Kevin D. Read
  • Malcolm J. McConville
  • Vicky M. Avery
  • Jonathan B. Baell
  • Darren J. Creek
Original Article
Part of the following topical collections:
  1. Recent advances in Pharmacometabolomics: enabling tools for precision medicine



Trypanosoma brucei is the causative agent of human African trypanosomiasis, which is responsible for thousands of deaths every year. Current therapies are limited and there is an urgent need to develop new drugs. The anti-trypanosomal compound, 3-(oxazolo[4,5-b]pyridine-2-yl)anilide (OXPA), was initially identified in a phenotypic screen and subsequently optimized by structure–activity directed medicinal chemistry. It has been shown to be non-toxic and to be active against a number of trypanosomatid parasites. However, nothing is known about its mechanism of action.


Here, we have utilized an untargeted metabolomics approach to investigate the biochemical effects and potential mode of action of this compound in T. brucei.


Total metabolite extracts were analysed by HILIC-chromatography coupled to high resolution mass spectrometry.


Significant accumulation of ceramides was observed in OXPA-treated T. brucei. To further understand drug-induced changes in lipid metabolism, a lipidomics method was developed which enables the measurement of hundreds of lipids with high throughput and precision. The application of this LC–MS based approach to cultured bloodstream-form T. brucei putatively identified over 500 lipids in the parasite including glycerophospholipids, sphingolipids and fatty acyls, and confirmed the OXPA-induced accumulation of ceramides. Labelling with BODIPY-ceramide further confirmed the ceramide accumulation following drug treatment.


These findings clearly demonstrate perturbation of ceramide metabolism by OXPA and indicate that the sphingolipid pathway is a promising drug target in T. brucei.


Human African trypanosomiasis Trypanosoma brucei Metabolomics Lipidomics Sphingolipid metabolism 



DJC acknowledges support from a NHMRC training fellowship. LF acknowledges an Australian Postgraduate Award. MJM is an NHMRC Principal Research Fellow. Financial support was received from NHMRC project Grants APP1025581 and APP1067728.

Compliance with ethical standards

Conflict of interests

All authors declare that they have no conflict of interest.

Human and animal rights

No human participants or animals were involved in this study.

Supplementary material

11306_2016_1062_MOESM1_ESM.xlsb (30.8 mb)
S1 IDEOM metabolite list and metadata from HILIC metabolomics study (XLSB 31541 kb)
11306_2016_1062_MOESM2_ESM.xlsb (22.9 mb)
S2 IDEOM metabolite list and metadata from lipidomics study (XLSB 23466 kb)
11306_2016_1062_MOESM3_ESM.pdf (376 kb)
S3 MSMS spectra of significant ceramides and acetylcarnitine (PDF 375 kb)
11306_2016_1062_MOESM4_ESM.pdf (39 kb)
S4 Results from IC50 analysis in presence of Carnitine (PDF 38 kb)


  1. Ali, J. A., Creek, D. J., Burgess, K., Allison, H. C., Field, M. C., Maser, P., et al. (2013). Pyrimidine salvage in Trypanosoma brucei bloodstream forms and the trypanocidal action of halogenated pyrimidines. Molecular Pharmacology, 83(2), 439–453. doi: 10.1124/mol.112.082321.CrossRefPubMedGoogle Scholar
  2. Becker, G. W., & Lester, R. L. (1980). Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. Journal of Bacteriology, 142(3), 747–754.PubMedPubMedCentralGoogle Scholar
  3. Besteiro, S., Biran, M., Biteau, N., Coustou, V., Baltz, T., Canioni, P., et al. (2002). Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. Journal of Biological Chemistry, 277(41), 38001–38012. doi: 10.1074/jbc.M201759200.CrossRefPubMedGoogle Scholar
  4. Bromley, P. E., Li, Y. O., Murphy, S. M., Sumner, C. M., & Lynch, D. V. (2003). Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes. Archives of Biochemistry and Biophysics, 417(2), 219–226.CrossRefPubMedGoogle Scholar
  5. Brun, R., Blum, J., Chappuis, F., & Burri, C. (2010). Human African trypanosomiasis. The Lancet, 375(9709), 148–159.CrossRefGoogle Scholar
  6. Chai, X. (2014). Untargeted lipidomic profiling of human plasma reveals differences due to race, gender and smoking status. Metabolomics, 4(131), 2153. doi: 10.4172/2153-0769.1000131.Google Scholar
  7. Chatterjee, A.K.N. A.S., Paraselli, P., Kondreddi, R.R., Leong, S.Y., Mishra, P.K., Moreau, R.J., Roland, J.T., Sim, W.L.S., Simon, O., Tan, L.J., Yeung, B.K., Zou, B., Bollu, V. (2014). Compounds and compositions for the treatment of parasitic diseases. US Patent 20140274926 A1. 18th September 2014.Google Scholar
  8. Choi, J. Y., Podust, L. M., & Roush, W. R. (2014). Drug strategies targeting CYP51 in neglected tropical diseases. Chemical Reviews, 114(22), 11242–11271. doi: 10.1021/cr5003134.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Creek, D. J., Anderson, J., McConville, M. J., & Barrett, M. P. (2012). Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, 181(2), 73–84. doi: 10.1016/j.molbiopara.2011.10.003.CrossRefPubMedGoogle Scholar
  10. Creek, D. J., Jankevics, A., Breitling, R., Watson, D. G., Barrett, M. P., & Burgess, K. E. V. (2011). Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: Improved metabolite identification by retention time prediction. Analytical Chemistry, 83(22), 8703–8710. doi: 10.1021/ac2021823.CrossRefPubMedGoogle Scholar
  11. Creek, D. J., Nijagal, B., Kim, D.-H., Rojas, F., Matthews, K. R., & Barrett, M. P. (2013). Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 57(6), 2768–2779. doi: 10.1128/aac.00044-13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Koning, H. P. (2001). Transporters in African trypanosomes: Role in drug action and resistance. International Journal of Parasitology, 31(5–6), 512–522.CrossRefPubMedGoogle Scholar
  13. Denny, P. W., Shams-Eldin, H., Price, H. P., Smith, D. F., & Schwarz, R. T. (2006). The protozoan inositol phosphorylceramide synthase: A novel drug target that defines a new class of sphingolipid synthase. Journal of Biological Chemistry, 281(38), 28200–28209. doi: 10.1074/jbc.M600796200.CrossRefPubMedPubMedCentralGoogle Scholar
  14. DNDi Oxaborole SCYX-7158 (HAT). Accessed 05 June 2015.
  15. Drexler, D. M., Reily, M. D., & Shipkova, P. A. (2011). Advances in mass spectrometry applied to pharmaceutical metabolomics. Analytical and Bioanalytical Chemistry, 399(8), 2645–2653. doi: 10.1007/s00216-010-4370-8.CrossRefPubMedGoogle Scholar
  16. Drugs for Neglected Diseases (2012). Pivotal Study of Fexinidazole for Human African Trypanosomiasis in Stage 2. Accessed 23 Nov 2012.
  17. Fairlamb, A., & Opperdoes, F. (1986). Carbohydrate metabolism in African trypanosomes, with special reference to the glycosome. In M. Morgan (Ed.), Carbohydrate Metabolism in Cultured Cells (pp. 183–224). US: Springer.CrossRefGoogle Scholar
  18. Ferrins, L., Rahmani, R., Sykes, M. L., Jones, A. J., Avery, V. M., Teston, E., et al. (2013). 3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis. European Journal of Medicinal Chemistry, 66, 450–465. doi: 10.1016/j.ejmech.2013.05.007.CrossRefPubMedGoogle Scholar
  19. Fridberg, A., Olson, C. L., Nakayasu, E. S., Tyler, K. M., Almeida, I. C., & Engman, D. M. (2008). Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. Journal of Cell Science, 121(Pt 4), 522–535. doi: 10.1242/jcs.016741.CrossRefPubMedGoogle Scholar
  20. Friedman, S., & Fraenkel, G. (1955). Reversible enzymatic acetylation of carnitine. Archives of Biochemistry and Biophysics, 59(2), 491–501.CrossRefPubMedGoogle Scholar
  21. Futerman, A. H., & Hannun, Y. A. (2004). The complex life of simple sphingolipids. EMBO Reports, 5(8), 777–782. doi: 10.1038/sj.embor.7400208.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gilbert, R. J., & Klein, R. A. (1984). Pyruvate kinase: A carnitine regulated site of ATP production in Trypanosoma brucei brucei. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 78(3), 595–599. doi: 10.1016/0305-0491(84)90104-4.CrossRefGoogle Scholar
  23. Gilbert, R. J., Klein, R. A., & Johnson, P. (1983). Bromoacetyl-l-carnitine: Biochemical and antitrypanosomal actions against Trypanosoma brucei brucei. Biochemical Pharmacology, 32(22), 3447–3451. doi: 10.1016/0006-2952(83)90375-1.CrossRefPubMedGoogle Scholar
  24. Hanau, S., Rinaldi, E., Dallocchio, F., Gilbert, I. H., Dardonville, C., Adams, M. J., et al. (2004). 6-phosphogluconate dehydrogenase: a target for drugs in African trypanosomes. Current Medicinal Chemistry, 11(19), 2639–2650.CrossRefPubMedGoogle Scholar
  25. Hu, C., van Dommelen, J., van der Heijden, R., Spijksma, G., Reijmers, T. H., Wang, M., et al. (2008). RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. Journal of Proteome Research, 7(11), 4982–4991. doi: 10.1021/pr800373m.CrossRefPubMedGoogle Scholar
  26. Kamleh, A., Barrett, M. P., Wildridge, D., Burchmore, R. J., Scheltema, R. A., & Watson, D. G. (2008). Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: A method with wide applicability to analysis of biomolecules. Rapid Communications in Mass Spectrometry, 22(12), 1912–1918. doi: 10.1002/rcm.3564.CrossRefPubMedGoogle Scholar
  27. Matthews, K. R. (2005). The developmental cell biology of Trypanosoma brucei. Journal of Cell Science, 118(2), 283–290. doi: 10.1242/jcs.01649.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mina, J. G., Pan, S.-Y., Wansadhipathi, N. K., Bruce, C. R., Shams-Eldin, H., Schwarz, R. T., et al. (2009). The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Molecular and Biochemical Parasitology, 168(1), 16–23. doi: 10.1016/j.molbiopara.2009.06.002.CrossRefPubMedGoogle Scholar
  29. Nok, A. J. (2003). Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitology Research, 90(1), 71–79. doi: 10.1007/s00436-002-0799-9.PubMedGoogle Scholar
  30. Patnaik, P. K., Field, M. C., Menon, A. K., Cross, G. A. M., Yee, M. C., & Bütikofer, P. (1993). Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Molecular and Biochemical Parasitology, 58(1), 97–105. doi: 10.1016/0166-6851(93)90094-E.CrossRefPubMedGoogle Scholar
  31. Priotto, G., Kasparian, S., Mutombo, W., Ngouama, D., Ghorashian, S., Arnold, U., et al. (2009). Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. The Lancet, 374(9683), 56–64.CrossRefGoogle Scholar
  32. Richmond, G. S., Gibellini, F., Young, S. A., Major, L., Denton, H., Lilley, A., et al. (2010). Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology, 137(9), 1357–1392. doi: 10.1017/s0031182010000715.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schenkman, S., Jiang, M. S., Hart, G. W., & Nussenzweig, V. (1991). A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell, 65(7), 1117–1125.CrossRefPubMedGoogle Scholar
  34. Seebeck, T., & Maser, P. (2009). Drug resistance in African Trypanosomiasis. In D. L. Mayers (Ed.), Antimicrobial drug resistance (pp. 589–604). Newyork: Humana Press.CrossRefGoogle Scholar
  35. Serricchio, M., & Butikofer, P. (2011). Trypanosoma brucei: a model micro-organism to study eukaryotic phospholipid biosynthesis. FEBS Journal, 278(7), 1035–1046. doi: 10.1111/j.1742-4658.2011.08012.x.CrossRefPubMedGoogle Scholar
  36. Silva, A. M., Cordeiro-da-Silva, A., & Coombs, G. H. (2011). Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS Neglected Tropical Diseases, 5(12), e1451. doi: 10.1371/journal.pntd.0001451.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Simarro, P. P., Diarra, A., Ruiz Postigo, J. A., Franco, J. R., & Jannin, J. G. (2011). The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: The way forward. PLoS Neglected Tropical Diseases, 5(2), e1007. doi: 10.1371/journal.pntd.0001007.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sutterwala, S. S., Creswell, C. H., Sanyal, S., Menon, A. K., & Bangs, J. D. (2007). De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes. Eukaryotic Cell, 6(3), 454–464. doi: 10.1128/EC.00283-06.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sutterwala, S. S., Hsu, F. F., Sevova, E. S., Schwartz, K. J., Zhang, K., Key, P., et al. (2008). Developmentally regulated sphingolipid synthesis in African trypanosomes. Molecular Microbiology, 70(2), 281–296. doi: 10.1111/j.1365-2958.2008.06393.x.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sykes, M. L., & Avery, V. M. (2009). Development of an Alamar Blue viability assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427. American Journal of Tropical Medicine and Hygeine, 81(4), 665–674. doi: 10.4269/ajtmh.2009.09-0015.CrossRefGoogle Scholar
  41. Sykes, M. L., Baell, J. B., Kaiser, M., Chatelain, E., Moawad, S. R., Ganame, D., et al. (2012). Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Neglected Tropical Diseases, 6(11), e1896. doi: 10.1371/journal.pntd.0001896.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tielens, A. G. M., & Van Hellemond, J. J. (1998). Differences in energy metabolism between Trypanosomatidae. Parasitology Today, 14(7), 265–272. doi: 10.1016/S0169-4758(98)01263-0.CrossRefPubMedGoogle Scholar
  43. t’Kindt, R., Scheltema, R. A., Jankevics, A., Brunker, K., Rijal, S., Dujardin, J.-C., Breitling, R., et al. (2010). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases. 4(11), e904. doi: 10.1371/journal.pntd.0000904.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Trochine, A., Creek, D. J., Faral-Tello, P., Barrett, M. P., & Robello, C. (2014). Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Neglected Tropical Diseases, 8(5), e2844. doi: 10.1371/journal.pntd.0002844.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vincent, I. M., Creek, D. J., Burgess, K., Woods, D. J., Burchmore, R. J., & Barrett, M. P. (2012). Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Neglected Tropical Diseases, 6(5), e1618. doi: 10.1371/journal.pntd.0001618.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Voogd, T. E., Vansterkenburg, E. L., Wilting, J., & Janssen, L. H. (1993). Recent research on the biological activity of suramin. Pharmacological Reviews, 45(2), 177–203.PubMedGoogle Scholar
  47. Yamada, T., Uchikata, T., Sakamoto, S., Yokoi, Y., Fukusaki, E., & Bamba, T. (2013). Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. Journal of Chromatography A, 1292, 211–218.CrossRefPubMedGoogle Scholar
  48. Young, S., & Smith, T. K. (2010). The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei. Molecular Microbiology, 76(6), 1461–1482. doi: 10.1111/j.1365-2958.2010.07151.x.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel Stoessel
    • 1
    • 2
  • Cameron J. Nowell
    • 3
  • Amy J. Jones
    • 4
  • Lori Ferrins
    • 5
  • Katherine M. Ellis
    • 1
  • Jennifer Riley
    • 6
  • Raphael Rahmani
    • 5
  • Kevin D. Read
    • 6
  • Malcolm J. McConville
    • 7
  • Vicky M. Avery
    • 4
  • Jonathan B. Baell
    • 5
  • Darren J. Creek
    • 1
  1. 1.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  2. 2.Department of BiotechnologyBeuth University of Applied SciencesBerlinGermany
  3. 3.Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  4. 4.Discovery Biology, Eskitis Institute for Drug DiscoveryGriffith UniversityNathanAustralia
  5. 5.Department of Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  6. 6.Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life SciencesUniversity of DundeeDundeeUK
  7. 7.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleAustralia

Personalised recommendations