, 12:78 | Cite as

Daily variation and effect of dietary folate on urinary pteridines

Original Article



Urinary pteridines are putative molecular biomarkers for noninvasive cancer screening and prognostication. Central to their translational biomarker development is the need to understand the sources and extent of their non-epidemiological variation.


This study was designed to characterize the two primary sources of urinary pteridine variance: daily variation and the effect of dietary folate.


Daily variation was studied by collecting urine specimens (n = 81) three times daily for 3 days. The effect of dietary folate was investigated in a treatment study in which urine specimens (n = 168) were collected daily during a control week and a treatment week during which participants received dietary folate supplements. Measurements of six urinary pteridines were made using high-performance liquid chromatography–tandem mass spectrometry. Coefficients of variation were calculated to characterize daily variance between and within subjects, while nearest neighbor non-parametric analyses were used to identify diurnal patterns and measure dietary folate effects.


Daily variance was approximately 35 % RSD for both within-day and between-day periods for most pteridines. Diurnal patterns in response to circadian rhythms were similarly observed for urinary pteridines. Folate supplementation was shown to alter urinary pteridine profiles in a pathway dependent manner, suggesting that dietary folate may regulate endogenous neopterin and biopterin biosynthesis.


Urinary pteridine levels were found to be responsive to both daily variation and folate supplementation. These findings provide new insights into pteridine biosynthesis and regulation as well as useful information for the design of future clinical translational research.


Urinary pteridines Daily variation Dietary folate Pteridine metabolism 

Supplementary material

11306_2016_1019_MOESM1_ESM.pdf (277 kb)
Supplementary material 1 (PDF 276 kb)


  1. Alessio, L., Berlin, A., Dell’Orto, A., Toffoletto, F., & Ghezzi, I. (1985). Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. International Archives of Occupational and Environmental Health, 55(2), 99–106.CrossRefPubMedGoogle Scholar
  2. Álvarez-Sánchez, B., Priego-Capote, F., Mata-Granados, J., & de Castro, M. L. (2010). Automated determination of folate catabolites in human biofluids (urine, breast milk and serum) by on-line SPE–HILIC–MS/MS. Journal of Chromatography A, 1217(28), 4688–4695.CrossRefPubMedGoogle Scholar
  3. Auzéby, A., Bogdan, A., Krosi, Z., & Touitou, Y. (1988). Time-dependence of urinary neopterin, a marker of cellular immune activity. Clinical Chemistry, 34(9), 1866–1867.PubMedGoogle Scholar
  4. Bailey, R. L., Dodd, K. W., Gahche, J. J., Dwyer, J. T., McDowell, M. A., Yetley, E. A., et al. (2010). Total folate and folic acid intake from foods and dietary supplements in the United States: 2003–2006. The American Journal of Clinical Nutrition, 91(1), 231–237.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blau, N., De Klerk, J., Thöny, B., Heizmann, C., Kierat, L., Smeitink, J., et al. (1996). Tetrahydrobiopterin loading test in xanthine dehydrogenase and molybdenum cofactor deficiencies. Biochemical and Molecular Medicine, 58(2), 199–203.CrossRefPubMedGoogle Scholar
  6. Burton, C., Shi, H., & Ma, Y. (2013). Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography–tandem mass spectrometry for clinical breast cancer detection. Analytical Chemistry, 85(22), 11137–11145.CrossRefPubMedGoogle Scholar
  7. Burton, C., Shi, H., & Ma, Y. (2014). Normalization of urinary pteridines by urine specific gravity for early cancer detection. Clinica Chimica Acta, 435, 42–47.CrossRefGoogle Scholar
  8. Bush, D. M. (2008). The US mandatory guidelines for federal workplace drug testing programs: Current status and future considerations. Forensic Science International, 174(2), 111–119.CrossRefPubMedGoogle Scholar
  9. Cabrerizo, F. M., Thomas, A. H., Lorente, C., Dántola, M. L., Petroselli, G., Erra-Balsells, R., et al. (2004). Generation of reactive oxygen species during the photolysis of 6-(hydroxymethyl) pterin in alkaline aqueous solutions. Helvetica Chimica Acta, 87(2), 349–365.CrossRefGoogle Scholar
  10. Cañada-Cañada, F., Espinosa-Mansilla, A., de la Peña, A. M., & de Llanos, A. M. (2009). Determination of marker pteridins and biopterin reduced forms, tetrahydrobiopterin and dihydrobiopterin, in human urine, using a post-column photoinduced fluorescence liquid chromatographic derivatization method. Analytica Chimica Acta, 648(1), 113–122.CrossRefPubMedGoogle Scholar
  11. Dántola, M. L., Denofrio, M. P., Zurbano, B., Gimenez, C. S., Ogilby, P. R., Lorente, C., et al. (2010). Mechanism of photooxidation of folic acid sensitized by unconjugated pterins. Photochemical & Photobiological Sciences, 9(12), 1604–1612.CrossRefGoogle Scholar
  12. Denofrio, M. P., Hatz, S., Lorente, C., Cabrerizo, F. M., Ogilby, P. R., & Thomas, A. H. (2009). The photosensitizing activity of lumazine using 2′-deoxyguanosine 5′-monophosphate and HeLa cells as targets. Photochemical & Photobiological Sciences, 8(11), 1539–1549.CrossRefGoogle Scholar
  13. Fukushima, T., & Shiota, T. (1974). Biosynthesis of biopterin by Chinese hamster ovary (CHO K1) cell culture. Journal of Biological Chemistry, 249(14), 4445–4451.PubMedGoogle Scholar
  14. Gamagedara, S., Gibbons, S., & Ma, Y. (2011). Investigation of urinary pteridine levels as potential biomarkers for noninvasive diagnosis of cancer. Clinica Chimica Acta, 412(1), 120–128.CrossRefGoogle Scholar
  15. Garcia-Gonzalez, M., Dominguez-Rodriguez, A., & Abreu-Gonzalez, P. (2006). Diurnal variations in serum neopterin levels are associated with the pineal hormone melatonin circadian rhythm in healthy human subjects. Journal of Pineal Research, 40(3), 288–289.CrossRefPubMedGoogle Scholar
  16. Gross, S. S., & Levi, R. (1992). Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. Journal of Biological Chemistry, 267(36), 25722–25729.PubMedGoogle Scholar
  17. Han, F., Huynh, B. H., Shi, H., Lin, B., & Ma, Y. (1999). Pteridine analysis in urine by capillary electrophoresis using laser-induced fluorescence detection. Analytical Chemistry, 71(7), 1265–1269.CrossRefPubMedGoogle Scholar
  18. Huber, C., Batchelor, J. R., Fuchs, D., Hausen, A., Lang, A., Niederwieser, D., et al. (1984). Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. The Journal of Experimental Medicine, 160(1), 310–316.CrossRefPubMedGoogle Scholar
  19. Huber, C., Fuchs, D., Hausen, A., Margreiter, R., Reibnegger, G., Spielberger, M., et al. (1983). Pteridines as a new marker to detect human T cells activated by allogeneic or modified self major histocompatibility complex (MHC) determinants. The Journal of Immunology, 130(3), 1047–1050.PubMedGoogle Scholar
  20. Jang, Y. J., Hong, H. N., Lee, J. D., & Hwang, O. (2000). Down-regulation of GTP cyclohydrolase I and tetrahydrobiopterin by melatonin. NeuroReport, 11(16), 3627–3630.CrossRefPubMedGoogle Scholar
  21. Konishi, M., Shibasaki, K., Hiroyasu, K., Toya, S., Kuwahara, T., Yamaguchi, A., et al. (1999). Clinical evaluation of urinary 6-hydroxymethylpterin (6-HMP) in patients with cancer of the digestive organs. Shigaku = Odontology, 86(4), 849–853.Google Scholar
  22. Kośliński, P., Bujak, R., Daghir, E., & Markuszewski, M. J. (2011). Metabolic profiling of pteridines for determination of potential biomarkers in cancer diseases. Electrophoresis, 32(15), 2044–2054.CrossRefPubMedGoogle Scholar
  23. Kośliński, P., Jarzemski, P., Markuszewski, M. J., & Kaliszan, R. (2014). Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18). Journal of Pharmaceutical and Biomedical Analysis, 91, 37–45.CrossRefPubMedGoogle Scholar
  24. Lorente, C., Petroselli, G., Dántola, M. L., Oliveros, E., & Thomas, A. H. (2011). Electron transfer initiated reactions photoinduced by pterins. Pteridines, 22(1), 111–119.CrossRefGoogle Scholar
  25. Ma, Y., & Burton, C. (2013). Pteridine detection in urine: The future of cancer diagnostics? Biomarkers in Medicine, 7(5), 679–681.CrossRefPubMedGoogle Scholar
  26. Makoto, N., Wakako, M., Tsutomu, T., Miyuki, O., & Kasan, P. (1994). Inhibition of tryptophan hydroxylase by dopamine and the precursor amino acids. Biochemical Pharmacology, 48(1), 207–210.CrossRefGoogle Scholar
  27. Manjula, S., Aroor, A. R., Raja, A., Rao, S., & Rao, A. (1993). Urinary excretion of 6-hydroxymethylpterin in brain tumours. Acta Oncologica, 32(1), 29–31.CrossRefPubMedGoogle Scholar
  28. Miller, R. C., Brindle, E., Holman, D. J., Shofer, J., Klein, N. A., Soules, M. R., et al. (2004). Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clinical Chemistry, 50(5), 924–932.CrossRefPubMedGoogle Scholar
  29. Niesser, M., Demmelmair, H., Weith, T., Moretti, D., Rauh-Pfeiffer, A., van Lipzig, M., et al. (2013). Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation. PLoS One, 8(2), e56194.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Off, M. K., Steindal, A. E., Porojnicu, A. C., Juzeniene, A., Vorobey, A., Johnsson, A., et al. (2005). Ultraviolet photodegradation of folic acid. Journal of Photochemistry and Photobiology B, 80(1), 47–55.CrossRefGoogle Scholar
  31. Oliveros, E., Dántola, M. L., Vignoni, M., Thomas, A. H., & Lorente, C. (2010). Production and quenching of reactive oxygen species by pterin derivatives, an intriguing class of biomolecules. Pure and Applied Chemistry, 83(4), 801–811.CrossRefGoogle Scholar
  32. Petroselli, G., Bartsch, J. M., & Thomas, A. H. (2006). Photoinduced generation of H2O2 and O2·-by 6-formylpterin in aqueous solutions. Pteridines, 17(3), 82–89.CrossRefGoogle Scholar
  33. Reibnegger, G., Hetzel, H., Fuchs, D., Fuith, L. C., Hausen, A., Werner, E. R., et al. (1987). Clinical significance of neopterin for prognosis and follow-up in ovarian cancer. Cancer Research, 47(18), 4977–4981.PubMedGoogle Scholar
  34. Schallreuter, K. U., Moore, J., Wood, J. M., Beazley, W. D., Peters, E. M., Marles, L. K., et al. (2001). Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: Identification of a general mechanism in regulation of All 6BH4-dependent processes? Journal of Investigative Dermatology, 116(1), 167–174.CrossRefPubMedGoogle Scholar
  35. Serrano, M. P., Lorente, C., Borsarelli, C. D., & Thomas, A. H. (2015). Unraveling the degradation mechanism of purine nucleotides photosensitized by pterins: The role of charge-transfer steps. ChemPhysChem, 16(10), 2244–2252.CrossRefPubMedGoogle Scholar
  36. Serrano, M. P., Lorente, C., Vieyra, F. E. M., Borsarelli, C. D., & Thomas, A. H. (2012). Photosensitizing properties of biopterin and its photoproducts using 2′-deoxyguanosine 5′-monophosphate as an oxidizable target. Physical Chemistry Chemical Physics, 14(33), 11657–11665.CrossRefPubMedGoogle Scholar
  37. Sprenger, H., Jacobs, C., Nain, M., Gressner, A., Prinz, H., Wesemann, W., et al. (1992). Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clinical Immunology and Immunopathology, 63(2), 188–195.CrossRefPubMedGoogle Scholar
  38. Stea, B., Backlund, P. S., Berkey, P. B., Cho, A. K., Halpern, B. C., Halpern, R. M., et al. (1978). Folate and pterin metabolism by cancer cells in culture. Cancer Research, 38(8), 2378–2384.PubMedGoogle Scholar
  39. Thomas, A. H., Lorente, C., Capparelli, A. L., Martínez, C. G., Braun, A. M., & Oliveros, E. (2003). Singlet oxygen (1 Δ g) production by pterin derivatives in aqueous solutions. Photochemical & Photobiological Sciences, 2(3), 245–250.CrossRefGoogle Scholar
  40. Thomas, A. H., Serrano, M. P., Rahal, V., Vicendo, P., Claparols, C., Oliveros, E., et al. (2013). Tryptophan oxidation photosensitized by pterin. Free Radical Biology and Medicine, 63, 467–475.CrossRefPubMedGoogle Scholar
  41. Thompson, D. K., Sloane, R., Bain, J. R., Stevens, R. D., Newgard, C. B., Pieper, C. F., et al. (2012). Daily variation of serum acylcarnitines and amino acids. Metabolomics, 8(4), 556–565.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Thony, B., Auerbach, G., & Blau, N. (2000). Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochemical Journal, 347, 1–16.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang, L., Erlandsen, H., Haavik, J., Knappskog, P. M., & Stevens, R. C. (2002). Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Biochemistry, 41(42), 12569–12574.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Single Nanoparticle, Single Cell, and Single Molecule MonitoringMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of ChemistryMissouri University of Science and TechnologyRollaUSA

Personalised recommendations