Metabolomics

, 12:60 | Cite as

Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature

  • Onur Turkoglu
  • Amna Zeb
  • Stewart Graham
  • Thomas Szyperski
  • J. Brian Szender
  • Kunle Odunsi
  • Ray Bahado-Singh
Review Article

Abstract

Introduction

Metabolomics is the emerging member of “omics” sciences advancing the understanding, diagnosis and treatment of many cancers, including ovarian cancer (OC).

Objectives

To systematically identify the metabolomic abnormalities in OC detection, and the dominant metabolic pathways associated with the observed alterations.

Methods

An electronic literature search was performed, up to and including January 15th 2016, for studies evaluating the metabolomic profile of patients with OC compared to controls. QUADOMICS tool was used to assess the quality of the twenty-three studies included in this systematic review.

Results

Biological samples utilized for metabolomic analysis include: serum/plasma (n = 13), urine (n = 4), cyst fluid (n = 3), tissue (n = 2) and ascitic fluid (n = 1). Metabolites related to cellular respiration, carbohydrate, lipid, protein and nucleotide metabolism were significantly altered in OC. Increased levels of tricarboxylic acid cycle intermediates and altered metabolites of the glycolytic pathway pointed to perturbations in cellular respiration. Alterations in lipid metabolism included enhanced fatty acid oxidation, abnormal levels of glycerolipids, sphingolipids and free fatty acids with common elevations of palmitate, oleate, and myristate. Increased levels of glutamine, glycine, cysteine and threonine were commonly reported while enhanced degradations of tryptophan, histidine and phenylalanine were found. N-acetylaspartate, a brain amino acid, was found elevated in primary and metastatic OC tissue and ovarian cyst fluid. Further, elevated levels of ketone bodies including 3-hydroxybutyrate were commonly reported. Increased levels of nucleotide metabolites and tocopherols were consistent through out the studies.

Conclusion

Metabolomics presents significant new opportunities for diagnostic biomarker development, elucidating previously unknown mechanisms of OC pathogenesis.

Keywords

Ovarian cancer Metabolomics Metabolites Systematic review Biomarker 

Supplementary material

11306_2016_990_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 103 kb)
11306_2016_990_MOESM2_ESM.docx (151 kb)
Supplementary material 2 (DOCX 152 kb)
11306_2016_990_MOESM3_ESM.docx (135 kb)
Supplementary material 3 (DOCX 136 kb)
11306_2016_990_MOESM4_ESM.docx (127 kb)
Supplementary material 4 (DOCX 128 kb)
11306_2016_990_MOESM5_ESM.docx (171 kb)
Supplementary material 5 (DOCX 171 kb)

References

  1. Asiago, V. M., Alvarado, L. Z., Shanaiah, N., Gowda, G. A., Owusu-Sarfo, K., Ballas, R. A., et al. (2010). Early detection of recurrent breast cancer using metabolite profiling. Cancer Research, 70(21), 8309–8318. doi:10.1158/0008-5472.CAN-10-1319.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baslow, M. H. (2002). Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochemistry International, 40(4), 295–300.CrossRefPubMedGoogle Scholar
  3. Baslow, M. H. (2003). N-acetylaspartate in the vertebrate brain: Metabolism and function. Neurochemical Research, 28(6), 941–953.CrossRefPubMedGoogle Scholar
  4. Boss, E. A., Moolenaar, S. H., Massuger, L. F., Boonstra, H., Engelke, U. F., de Jong, J. G., et al. (2000). High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR in Biomedicine, 13(5), 297–305.CrossRefPubMedGoogle Scholar
  5. Buas, M. F., Gu, H., Djukovic, D., Zhu, J., Drescher, C. W., Urban, N., et al. (2016). Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecologic Oncology, 140(1), 138–144. doi:10.1016/j.ygyno.2015.10.021.CrossRefPubMedGoogle Scholar
  6. Buys, S. S., Partridge, E., Black, A., Johnson, C. C., Lamerato, L., Isaacs, C., et al. (2011). Effect of screening on ovarian cancer mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA, 305(22), 2295–2303. doi:10.1001/jama.2011.766.CrossRefPubMedGoogle Scholar
  7. Carracedo, A., Cantley, L. C., & Pandolfi, P. P. (2013). Cancer metabolism: Fatty acid oxidation in the limelight. Nature Reviews Cancer, 13(4), 227–232. doi:10.1038/nrc3483.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carrola, J., Rocha, C. M., Barros, A. S., Gil, A. M., Goodfellow, B. J., Carreira, I. M., et al. (2011). Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. Journal of Proteome Research, 10(1), 221–230. doi:10.1021/pr100899x.CrossRefPubMedGoogle Scholar
  9. Chen, J., Zhang, X., Cao, R., Lu, X., Zhao, S., Fekete, A., et al. (2011a). Serum 27-nor-5beta-cholestane-3,7,12,24,25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer. Journal of Proteome Research, 10(5), 2625–2632. doi:10.1021/pr200173q.CrossRefPubMedGoogle Scholar
  10. Chen, J., Zhang, Y., Zhang, X., Cao, R., Chen, S., Huang, Q., et al. (2011b). Application of L-EDA in metabonomics data handling: global metabolite profiling and potential biomarker discovery of epithelial ovarian cancer prognosis. Metabolomics, 7(4), 614–622. doi:10.1007/s11306-011-0286-3.CrossRefGoogle Scholar
  11. Chen, J., Zhou, L., Zhang, X., Lu, X., Cao, R., Xu, C., et al. (2012). Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis, 33(22), 3361–3369. doi:10.1002/elps.201200140.CrossRefPubMedGoogle Scholar
  12. Cheng, Y., Li, L., Zhu, B., Liu, F., Wang, Y., Gu, X., et al. (2015). Expanded metabolomics approach to profiling endogenous carbohydrates in the serum of ovarian cancer patients. Journal of Separation Science,. doi:10.1002/jssc.201500964.Google Scholar
  13. Collier, V. U., Butler, D. O., & Mitch, W. E. (1980). Metabolic effects of L-phenyllactate in perfused kidney, liver, and muscle. American Journal of Physiology, 238(5), E450–E457.PubMedGoogle Scholar
  14. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. doi:10.1038/nature01322.CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345–19350. doi:10.1073/pnas.0709747104.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Denkert, C., Budczies, J., Kind, T., Weichert, W., Tablack, P., Sehouli, J., et al. (2006). Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Research, 66(22), 10795–10804. doi:10.1158/0008-5472.CAN-06-0755.CrossRefPubMedGoogle Scholar
  17. Derdak, Z., Mark, N. M., Beldi, G., Robson, S. C., Wands, J. R., & Baffy, G. (2008). The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Research, 68(8), 2813–2819. doi:10.1158/0008-5472.CAN-08-0053.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78. doi:10.1002/mas.20108.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387–426. doi:10.1039/b906712b.CrossRefPubMedGoogle Scholar
  20. Falus, A. (2003). Histamine, part of the metabolome. Acta Biologica Hungarica, 54(1), 27–34. doi:10.1556/ABiol.54.2003.1.3.CrossRefPubMedGoogle Scholar
  21. Fan, L., Zhang, W., Yin, M., Zhang, T., Wu, X., Zhang, H., et al. (2012). Identification of metabolic biomarkers to diagnose epithelial ovarian cancer using a UPLC/QTOF/MS platform. Acta Oncologica, 51(4), 473–479. doi:10.3109/0284186X.2011.648338.CrossRefPubMedGoogle Scholar
  22. Fong, M. Y., McDunn, J., & Kakar, S. S. (2011). Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One, 6(5), e19963. doi:10.1371/journal.pone.0019963.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Galazis, N., Docheva, N., Nicolaides, K. H., & Atiomo, W. (2013). Proteomic biomarkers of preterm birth risk in women with polycystic ovary syndrome (PCOS): A systematic review and biomarker database integration. PLoS One, 8(1), e53801. doi:10.1371/journal.pone.0053801.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ganti, S., Taylor, S. L., Kim, K., Hoppel, C. L., Guo, L., Yang, J., et al. (2012). Urinary acylcarnitines are altered in human kidney cancer. International Journal of Cancer, 130(12), 2791–2800. doi:10.1002/ijc.26274.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Garcia, E., Andrews, C., Hua, J., Kim, H. L., Sukumaran, D. K., Szyperski, T., et al. (2011). Diagnosis of early stage ovarian cancer by 1H NMR metabonomics of serum explored by use of a microflow NMR probe. Journal of Proteome Research, 10(4), 1765–1771. doi:10.1021/pr101050d.CrossRefPubMedPubMedCentralGoogle Scholar
  26. German, J. B., Hammock, B. D., & Watkins, S. M. (2005). Metabolomics: Building on a century of biochemistry to guide human health. Metabolomics, 1(1), 3–9. doi:10.1007/s11306-005-1102-8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guan, W., Zhou, M., Hampton, C. Y., Benigno, B. B., Walker, L. D., Gray, A., et al. (2009). Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformatics, 10, 259. doi:10.1186/1471-2105-10-259.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hilvo, M., de Santiago, I., Gopalacharyulu, P., Schmitt, W. D., Budczies, J., Kuhberg, M., et al. (2015). Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of high-grade serous ovarian carcinomas. Cancer Research,. doi:10.1158/0008-5472.CAN-15-2298.PubMedGoogle Scholar
  29. Holschneider, C. H., & Berek, J. S. (2000). Ovarian cancer: Epidemiology, biology, and prognostic factors. Seminars in Surgical Oncology, 19(1), 3–10.CrossRefPubMedGoogle Scholar
  30. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. doi:10.1002/jms.1777.CrossRefPubMedGoogle Scholar
  31. Huynh, J., Xiong, G., & Bentley-Lewis, R. (2014). A systematic review of metabolite profiling in gestational diabetes mellitus. Diabetologia, 57(12), 2453–2464. doi:10.1007/s00125-014-3371-0.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Inaba, T., Ino, K., Kajiyama, H., Yamamoto, E., Shibata, K., Nawa, A., et al. (2009). Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecologic Oncology, 115(2), 185–192. doi:10.1016/j.ygyno.2009.07.015.CrossRefPubMedGoogle Scholar
  33. Jacobs, I., & Bast, R. C, Jr. (1989). The CA 125 tumour-associated antigen: A review of the literature. Human Reproduction, 4(1), 1–12.PubMedGoogle Scholar
  34. Jobard, E., Pontoizeau, C., Blaise, B. J., Bachelot, T., Elena-Herrmann, B., & Tredan, O. (2014). A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Letters, 343(1), 33–41. doi:10.1016/j.canlet.2013.09.011.CrossRefPubMedGoogle Scholar
  35. Ke, C., Hou, Y., Zhang, H., Fan, L., Ge, T., Guo, B., et al. (2015). Large-scale profiling of metabolic dysregulation in ovarian cancer. International Journal of Cancer, 136(3), 516–526. doi:10.1002/ijc.29010.PubMedGoogle Scholar
  36. Kolwijck, E., Wevers, R. A., Engelke, U. F., Woudenberg, J., Bulten, J., Blom, H. J., et al. (2010). Ovarian cyst fluid of serous ovarian tumors contains large quantities of the brain amino acid N-acetylaspartate. PLoS One, 5(4), e10293. doi:10.1371/journal.pone.0010293.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kwon, H., Oh, S., Jin, X., An, Y. J., & Park, S. (2015). Cancer metabolomics in basic science perspective. Arch Pharm Res, 38(3), 372–380. doi:10.1007/s12272-015-0552-4.CrossRefPubMedGoogle Scholar
  38. Kyriakides, M., Rama, N., Sidhu, J., Gabra, H., Keun, H. C., & El-Bahrawy, M. (2016). Metabonomic analysis of ovarian tumour cyst fluid by proton nuclear magnetic resonance spectroscopy. Oncotarget,. doi:10.18632/oncotarget.6891.Google Scholar
  39. Lachance, J. A., Choudhri, A. F., Sarti, M., Modesitt, S. C., Jazaeri, A. A., & Stukenborg, G. J. (2011). A nomogram for estimating the probability of ovarian cancer. Gynecologic Oncology, 121(1), 2–7. doi:10.1016/j.ygyno.2010.12.365.CrossRefPubMedGoogle Scholar
  40. Locasale, J. W., Melman, T., Song, S., Yang, X., Swanson, K. D., Cantley, L. C., et al. (2012). Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Molecular and Cellular Proteomics, 11(6), M111.014688. doi:10.1074/mcp.M111.014688.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lumbreras, B., Porta, M., Marquez, S., Pollan, M., Parker, L. A., & Hernandez-Aguado, I. (2008). QUADOMICS: An adaptation of the Quality Assessment of Diagnostic Accuracy Assessment (QUADAS) for the evaluation of the methodological quality of studies on the diagnostic accuracy of ‘-omics’-based technologies. Clinical Biochemistry, 41(16–17), 1316–1325. doi:10.1016/j.clinbiochem.2008.06.018.CrossRefPubMedGoogle Scholar
  42. Medina, M. A., Quesada, A. R., Nunez de Castro, I., & Sanchez-Jimenez, F. (1999). Histamine, polyamines, and cancer. Biochemical Pharmacology, 57(12), 1341–1344.CrossRefPubMedGoogle Scholar
  43. Melichar, B., Ferrandina, G., Verschraegen, C. F., Loercher, A., Abbruzzese, J. L., & Freedman, R. S. (1998). Growth inhibitory effects of aromatic fatty acids on ovarian tumor cell lines. Clinical Cancer Research, 4(12), 3069–3076.PubMedGoogle Scholar
  44. Menon, U., Ryan, A., Kalsi, J., Gentry-Maharaj, A., Dawnay, A., Habib, M., et al. (2015). Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. Journal of Clinical Oncology, 33(18), 2062–2071. doi:10.1200/JCO.2014.59.4945.CrossRefPubMedGoogle Scholar
  45. Milojkovic, M., Hrgovic, Z., Hrgovic, I., Jonat, W., Maass, N., & Bukovic, D. (2004). Significance of CA 125 serum level in discrimination between benign and malignant masses in the pelvis. Archives of Gynecology and Obstetrics, 269(3), 176–180. doi:10.1007/s00404-002-0411-7.CrossRefPubMedGoogle Scholar
  46. Nossov, V., Amneus, M., Su, F., Lang, J., Janco, J. M., Reddy, S. T., et al. (2008). The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? American Journal of Obstetrics and Gynecology, 199(3), 215–223. doi:10.1016/j.ajog.2008.04.009.CrossRefPubMedGoogle Scholar
  47. Odin, A. P. (1997). Vitamins as antimutagens: Advantages and some possible mechanisms of antimutagenic action. Mutation Research, 386(1), 39–67.CrossRefPubMedGoogle Scholar
  48. Odunsi, K., Wollman, R. M., Ambrosone, C. B., Hutson, A., McCann, S. E., Tammela, J., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113(5), 782–788. doi:10.1002/ijc.20651.CrossRefPubMedGoogle Scholar
  49. Parker, L. A., Gomez Saez, N., Lumbreras, B., Porta, M., & Hernandez-Aguado, I. (2010). Methodological deficits in diagnostic research using ‘-omics’ technologies: Evaluation of the QUADOMICS tool and quality of recently published studies. PLoS One, 5(7), e11419. doi:10.1371/journal.pone.0011419.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Platten, M., Wick, W., & Van den Eynde, B. J. (2012). Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Research, 72(21), 5435–5440. doi:10.1158/0008-5472.CAN-12-0569.CrossRefPubMedGoogle Scholar
  51. Pollard, P. J., Briere, J. J., Alam, N. A., Barwell, J., Barclay, E., Wortham, N. C., et al. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Human Molecular Genetics, 14(15), 2231–2239. doi:10.1093/hmg/ddi227.CrossRefPubMedGoogle Scholar
  52. Reo, N. V. (2002). NMR-based metabolomics. Drug and Chemical Toxicology, 25(4), 375–382. doi:10.1081/DCT-120014789.CrossRefPubMedGoogle Scholar
  53. Schulze, A., & Harris, A. L. (2012). How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 491(7424), 364–373. doi:10.1038/nature11706.CrossRefPubMedGoogle Scholar
  54. Shender, V. O., Pavlyukov, M. S., Ziganshin, R. H., Arapidi, G. P., Kovalchuk, S. I., Anikanov, N. A., et al. (2014). Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Molecular and Cellular Proteomics, 13(12), 3558–3571. doi:10.1074/mcp.M114.041194.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29. doi:10.3322/caac.21208.Google Scholar
  56. Silva, E. G., Lopez, P. R., Atkinson, E. N., & Fente, C. A. (2010). A new approach for identifying patients with ovarian epithelial neoplasms based on high-resolution mass spectrometry. American Journal of Clinical Pathology, 134(6), 903–909. doi:10.1309/AJCPG91UXBYFNRVO.CrossRefPubMedGoogle Scholar
  57. Slupsky, C. M., Steed, H., Wells, T. H., Dabbs, K., Schepansky, A., Capstick, V., et al. (2010). Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clinical Cancer Research, 16(23), 5835–5841. doi:10.1158/1078-0432.CCR-10-1434.CrossRefPubMedGoogle Scholar
  58. Sperner-Unterweger, B., Neurauter, G., Klieber, M., Kurz, K., Meraner, V., Zeimet, A., et al. (2011). Enhanced tryptophan degradation in patients with ovarian carcinoma correlates with several serum soluble immune activation markers. Immunobiology, 216(3), 296–301. doi:10.1016/j.imbio.2010.07.010.CrossRefPubMedGoogle Scholar
  59. Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440. doi:10.1158/1078-0432.CCR-08-1059.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sutphen, R., Xu, Y., Wilbanks, G. D., Fiorica, J., Grendys, E. C, Jr, LaPolla, J. P., et al. (2004). Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev, 13(7), 1185–1191.PubMedGoogle Scholar
  61. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. doi:10.1126/science.1160809.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vermeersch, K. A., & Styczynski, M. P. (2013). Applications of metabolomics in cancer research. Journal of Carcinogenesis, 12, 9. doi:10.4103/1477-3163.113622.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.CrossRefPubMedGoogle Scholar
  64. Weckwerth, W., & Morgenthal, K. (2005). Metabolomics: From pattern recognition to biological interpretation. Drug Discovery Today, 10(22), 1551–1558. doi:10.1016/S1359-6446(05)03609-3.CrossRefPubMedGoogle Scholar
  65. Whiting, P., Harbord, R., & Kleijnen, J. (2005). No role for quality scores in systematic reviews of diagnostic accuracy studies. BMC Medical Research Methodology, 5, 19. doi:10.1186/1471-2288-5-19.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wishart, D. S. (2007). Current progress in computational metabolomics. Briefing in Bioinformatics, 8(5), 279–293. doi:10.1093/bib/bbm030.CrossRefGoogle Scholar
  67. Wishart, D. S. (2009). Computational strategies for metabolite identification in metabolomics. Bioanalysis, 1(9), 1579–1596. doi:10.4155/bio.09.138.CrossRefPubMedGoogle Scholar
  68. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769–1782. doi:10.4155/bio.11.155.CrossRefPubMedGoogle Scholar
  69. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research, 41(Database issue), D801–D807. doi:10.1093/nar/gks1065.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Woo, H. M., Kim, K. M., Choi, M. H., Jung, B. H., Lee, J., Kong, G., et al. (2009). Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clinica Chimica Acta, 400(1–2), 63–69. doi:10.1016/j.cca.2008.10.014.CrossRefGoogle Scholar
  71. Wu, X., Daniels, G., Lee, P., & Monaco, M. E. (2014). Lipid metabolism in prostate cancer. American Journal of Clinical and Experimental Urology, 2(2), 111–120.PubMedPubMedCentralGoogle Scholar
  72. Zang, X., Jones, C. M., Long, T. Q., Monge, M. E., Zhou, M., Walker, L. D., et al. (2014). Feasibility of detecting prostate cancer by ultraperformance liquid chromatography-mass spectrometry serum metabolomics. Journal of Proteome Research, 13(7), 3444–3454. doi:10.1021/pr500409q.CrossRefPubMedGoogle Scholar
  73. Zhang, T., Wu, X., Ke, C., Yin, M., Li, Z., Fan, L., et al. (2013). Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. Journal of Proteome Research, 12(1), 505–512. doi:10.1021/pr3009572.CrossRefPubMedGoogle Scholar
  74. Zhang, T., Wu, X., Yin, M., Fan, L., Zhang, H., Zhao, F., et al. (2012). Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clinica Chimica Acta, 413(9–10), 861–868. doi:10.1016/j.cca.2012.01.026.CrossRefGoogle Scholar
  75. Zhou, M., Guan, W., Walker, L. D., Mezencev, R., Benigno, B. B., Gray, A., et al. (2010). Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiology, Biomarkers & Prevention, 19(9), 2262–2271. doi:10.1158/1055-9965.EPI-10-0126.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Onur Turkoglu
    • 1
  • Amna Zeb
    • 1
  • Stewart Graham
    • 1
  • Thomas Szyperski
    • 2
  • J. Brian Szender
    • 3
  • Kunle Odunsi
    • 3
    • 4
  • Ray Bahado-Singh
    • 1
  1. 1.Department of Obstetrics and GynecologyBeaumont HospitalRoyal OakUSA
  2. 2.Department of ChemistryCollege of Arts and Sciences, University at BuffaloBuffaloUSA
  3. 3.Department of Gynecologic OncologyRoswell Park Cancer InstituteBuffaloUSA
  4. 4.Center for ImmunotherapyRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations