Metabolomics

, 12:71 | Cite as

Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis

  • Emilia M. Sogin
  • Hollie M. Putnam
  • Paul E. Anderson
  • Ruth D. Gates
Original Article

Abstract

Introduction

As a changing climate threatens the persistence of terrestrial and marine ecosystems by altering community composition and function, differential performance of taxa highlights the need for predictive metrics and mechanistic understanding of the factors underlying positive performance in the face of environmental disturbances. Biochemical reactions within cells provide a snapshot of molecular regulation and flexibility during exposure to environmental stressors. However, because the organism is the unit of selection there is a need for the integration of metabolite data with organism physiology to understand mechanisms responsible for individual success under a changing climate.

Objectives

Our study aims to characterize the molecular response of reef corals to simulated global climate change stressors. Furthermore, we seek to relate changes in the molecular physiology to observations in overall colony response.

Methods

To this end, we applied a non-targeted metabolomic approach to describe lipid and primary metabolite composition after exposure of the reef-building coral Pocillopora damicornis to ambient and elevated experimental climate change conditions. We compared these metabolite data to organism physiology, specifically the key processes of photosynthesis, respiration, and calcification.

Results

Corals significantly altered their lipid and primary metabolite profiles in response to experimental treatments. Primary metabolite profiles predicted organisms’ net photosynthesis, but not calcification or respiration measures. Despite challenges in metabolome annotation, our data indicated corals alter carbohydrate composition, cell structural lipids, and signaling compounds in response to elevated treatment conditions.

Conclusions

The integration of metabolite and physiological data highlights the predictive power of metabolomics in defining organism performance and provides biomarkers for future studies. Here, we present a multivariate biomarker approach to assess climate change impacts and advance our mechanistic understanding of stress response in this keystone species.

Keywords

Metabolomics Lipidomics Pocillopora damicornis Ecological disturbance Ocean acidification Global climate change 

Supplementary material

11306_2016_987_MOESM1_ESM.docx (173 kb)
Supplementary material 1 (DOCX 173 kb)
11306_2016_987_MOESM2_ESM.xlsx (377 kb)
Supplementary material 2 (XLSX 376 kb)

References

  1. Ainsworth, T. D., Thurber, R. V., & Gates, R. D. (2010). The future of coral reefs: A microbial perspective. Trends in Ecology & Evolution, 25, 233–240.CrossRefGoogle Scholar
  2. Al-Horani, F. A., Al-Moghrabi, S. M., & de Beer, D. (2003). The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Marine Biology, 142, 419–426.Google Scholar
  3. Allemand, D., Ferrier-Pagès, C., Furla, P., Houlbrèque, F., Puverel, S., Reynaud, S., et al. (2004). Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. Comptes Renduls Palevol, 3, 453–467.CrossRefGoogle Scholar
  4. Allemand, D., Tambutté, É., Allemand, D., TambuttE, E., Girard, J., Jaubert, J., et al. (1998). Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. Journal of Experimental Biology, 201, 2001–2009.PubMedGoogle Scholar
  5. Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., & Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences USA, 105, 17442–17446.CrossRefGoogle Scholar
  6. Aslund, M. W., Celejewski, M., Lankadurai, B. P., Simpson, A. J., & Simpson, M. J. (2011). Natural variability and correlations in the metabolic profile of healthy Eisenia fetida earthworms observed using 1H NMR metabolomics. Chemosphere, 8, 1096–1101.CrossRefGoogle Scholar
  7. Baird, A. H., & Marshall, P. A. (2002). Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series, 237, 133–141.CrossRefGoogle Scholar
  8. Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C., & Lesser, M. P. (2006). The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 337, 131–146.CrossRefGoogle Scholar
  9. Banaszak, A. T., LaJeunesse, T. C., & Trench, R. K. (2000). The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. Journal of Experimental Marine Biology and Ecology, 249, 219–233.CrossRefGoogle Scholar
  10. Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., & Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences USA, 110, 1387–1392.CrossRefGoogle Scholar
  11. Bolling, C., & Fiehn, O. (2005). Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology, 139, 1995–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouslimani, A., Porto, C., Rath, C. M., Wang, M., Guo, Y., Gonzalez, A., et al. (2015). Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences USA, 122, E2120–E2129.CrossRefGoogle Scholar
  13. Brown, B. (1997). Coral bleaching: Causes and consequences. Coral Reefs, 16, S129–S138.CrossRefGoogle Scholar
  14. Bruno, J. F., & Selig, E. R. (2007). Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS One, 2, e711.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: a critical review and future perspectives. Metabolomics, 5, 3–21.CrossRefGoogle Scholar
  16. Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. Journal of Experimental Marine Biology and Ecology, 215, 3467–3477.CrossRefGoogle Scholar
  17. Coelho, F. J. R. C., Cleary, D. F. R., Rocha, R. J. M., Calado, R., Castanheira, J. M., Rocha, S. M., et al. (2015). Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Global Change Biology, 21, 1871–1886.PubMedCrossRefGoogle Scholar
  18. Constantz, B., & Weiner, S. (1988). Acid macromolecules associated with the mineral phase of scleractinian coral skeletons. Comparative Biochemistry and Physiology, 248, 253–258.Google Scholar
  19. Crawley, A., Kline, D., Dunn, S., Anthony, K., & Dove, S. (2010). The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biology, 16, 851–863.CrossRefGoogle Scholar
  20. Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76, 229–261.PubMedPubMedCentralCrossRefGoogle Scholar
  21. De’ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences USA, 109, 17995–17999.CrossRefGoogle Scholar
  22. DeSalvo, M., Sunagawa, S., Voolstra, C., & Medina, M. (2010). Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Marine Ecology Progress Series, 402, 97–113.CrossRefGoogle Scholar
  23. Dickinson, G. H., Ivanina, A. V., Matoo, O. B., Pörtner, H. O., Lannig, G., Bock, C., et al. (2012). Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. Journal of Experimental Marine Biology and Ecology, 215, 29–43.CrossRefGoogle Scholar
  24. Dittami, S. M., Scornet, D., Petit, J.-L., Ségurens, B., Da Silva, C., Corre, E., et al. (2009). Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biology, 10, R66.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192.PubMedCrossRefGoogle Scholar
  26. Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11–37.PubMedCrossRefGoogle Scholar
  27. Downs, C. A., Ostrander, G. K., Rougee, L., Rongo, T., Knutson, S., Williams, D. E., et al. (2012). The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology, 21, 768–782.PubMedCrossRefGoogle Scholar
  28. Downs, C. A., Woodley, C. M., Richmond, R. H., Lanning, L. L., & Owen, R. (2005). Shifting the paradigm of coral-reef “health” assessment. Marine Pollution, 51, 486–494.CrossRefGoogle Scholar
  29. Drupp, P., De Carlo, E. H., Machkenzie, F. T., Bienfang, P., & Sabine, C. (2011). Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe bay, Hawaii. Aquatic Geochemistry, 17, 473–498.CrossRefGoogle Scholar
  30. Dunn, S. R., Thomas, M. C., Nette, G. W., & Dove, S. G. (2012). A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis. PLoS One, 7, e46801.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ellis, R. P., Spicer, J. I., Byrne, J. J., Sommer, U., Viant, M. R., White, D. A., & Widdicombe, S. (2014). 1H-NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environmental Technology, 48, 7044–7052.CrossRefGoogle Scholar
  32. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments spectrometric metadata. Data integration in the life sciences SE—18 (pp. 224–239). Berlin: Springer.CrossRefGoogle Scholar
  34. Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee, D. Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: reporting MSI-compliant studies. The Plant Journal, 53, 691–704.PubMedCrossRefGoogle Scholar
  35. Fitt, W. K., Gates, R. D., Hoegh-Guldberg, O., Bythell, J. C., Jatkar, A., Grottoli, A. G., et al. (2009). Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. Journal of Experimental Marine Biology and Ecology, 373, 102–110.CrossRefGoogle Scholar
  36. Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958.PubMedCrossRefGoogle Scholar
  37. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-harel, O., Eisen, M. B., Storz, G., et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gates, R. D., & Ainsworth, T. D. (2011). The nature and taxonomic composition of coral symbiomes as drivers of performance limits in Scleractinian corals. Journal of Experimental Marine Biology and Ecology, 408, 94–101.CrossRefGoogle Scholar
  39. Gattuso, J.-P., Allemand, D., & Frankignoulle, M. (1999). Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist, 39, 160–183.CrossRefGoogle Scholar
  40. Gigon, A., Matos, A.-R., Laffray, D., Zuily-Fodil, Y., & Pham-Thi, A.-T. (2004). Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Annals of Botany, 94, 345–351.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Glynn, P. W. (1984). Widespread coral mortality and the 1982-83 El Nino warming event. Environmental Conservation, 11, 133–146.CrossRefGoogle Scholar
  42. Gordon, B. R., & Leggat, W. (2010). Symbiodinium—invertebrate symbioses and the role of metabolomics. Marine Drugs, 8, 2546–2568.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gordon, B., Leggat, W., & Motti, C. (2013). Extraction protocol for nontargeted NMR and LC-MS metabolomics-based analysis of hard coral and their algal symbionts. In U. Roessner & D. A. Dias (Eds.), Metabolomics tools for natural product discovery (Vol. 1055, pp. 129–147). Dordrecht: Humana Press.CrossRefGoogle Scholar
  44. Goreau, T. F., Goreau, N. I., & Yonge, C. M. (1971). Reef corals: Autotrophs or heterotrophs? Biological Bulletin, 141, 247–260.CrossRefGoogle Scholar
  45. Goreau, T. J., & Macfarlane, A. H. (1990). Reduced growth rate of Montastrea annularis following the 1987–1988 coral bleaching event. Coral Reefs, 8, 211–215.CrossRefGoogle Scholar
  46. Grottoli, A. G., Rodrigues, L. J., & Juarez, C. (2004). Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Marine Biology, 145, 621–631.CrossRefGoogle Scholar
  47. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.PubMedGoogle Scholar
  48. Hammer, K. M., Pedersen, S. A., & Størseth, T. R. (2012). Elevated seawater levels of CO2 change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas. Comparative Biochemistry and Physiology Part D, 7, 292–302.Google Scholar
  49. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737.PubMedCrossRefGoogle Scholar
  50. Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., et al. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17, 360–365.PubMedCrossRefGoogle Scholar
  51. IPCC. (2014). Climate Change 2014: Synthesis report. Contribution of working groups 1, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland.Google Scholar
  52. Jury, C. P., Robert, W. F., & Alina, S. M. (2010). Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16, 1632–1644.CrossRefGoogle Scholar
  53. Kanehisa, M., & Goto, S. (2000). KEGG : Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kaniewska, P., Campbell, P. R., Kline, D. I., Rodriguez-Lanetty, M., Miller, D. J., Dove, S., & Hoegh-Guldberg, O. (2012). Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One, 7, e34659.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome. Plant Physiology, 136, 4159–4168.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kaplan, F., Kopka, J., Sung, D. Y., Zhao, W., Popp, M., Porat, R., & Guy, C. L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal, 50, 967–981.PubMedCrossRefGoogle Scholar
  57. Kind, T., & Fiehn, O. (2006). Metabolite profiling in blood plasma. Metabolomics: Methods and protocols (pp. 3–18). Totowa: Humana Press.Google Scholar
  58. Kind, T., Liu, K., Lee, D. Y., Defelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10, 755–758.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Klueter, A., Crandall, J., Archer, F., Teece, M., & Coffroth, M. (2015). Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Metabolites, 5, 74–99.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kopp, C., Domart-Coulon, I., Escrig, S., Humbel, B. M., Hignette, M., & Meibom, A. (2015). Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio, 6, e02299–14.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Krediet, C., Ritchie, K., Paul, V., & Teplitski, M. (2013). Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proceedings of the Royal Society B, 280, 20122328.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419–1434.PubMedCrossRefGoogle Scholar
  63. Kültz, D. (2005). Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67, 225–257.PubMedCrossRefGoogle Scholar
  64. Langdon, C., & Atkinson, M. J. (2005). Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal Geophysical Research, 110, 1–16.CrossRefGoogle Scholar
  65. Lardon, I., Eyckmans, M., Vu, T., Laukens, K., Boeck, G., & Dommisse, R. (2013). 1H-NMR study of the metabolome of a moderately hypoxia-tolerant fish, the common carp (Cyprinus carpio). Metabolomics, 9, 1216–1227.Google Scholar
  66. Lesser, M. P., Mazel, C. H., Gorbunov, M. Y., & Falkowski, P. G. (2004). Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science, 305, 997–1000.PubMedCrossRefGoogle Scholar
  67. Lesser, M. P. (2011). Coral bleaching: causes and mechanisms. In Z. Dubinsky & N. Stambler (Eds.), Coral reefs: An ecosystem in transistion (pp. 405–419), Springer.Google Scholar
  68. Loya, Y. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4, 122–131.CrossRefGoogle Scholar
  69. Marubini, F., Ferrier-Pages, C., Furla, P., & Allemand, D. (2008). Coral calcification responds to seawater acidification: A working hypothesis towards a physiological mechanism. Coral Reefs, 27, 491–499.CrossRefGoogle Scholar
  70. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwudke, D. (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 49, 1137–1146.PubMedPubMedCentralCrossRefGoogle Scholar
  71. McHardy, I. H., Goudarzi, M., Tong, M., Ruegger, P. M., Schwager, E., Weger, J. R., et al. (2013). Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 1, 17.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mendes, J. M., & Woodley, J. D. (2002). Timing of reproduction in Montastraea annularis: Relationship to environmental variables. Marine Ecology Progress Series, 277, 241–251.CrossRefGoogle Scholar
  73. Meyer, E., & Weis, V. M. (2012). Study of cnidarian-algal symbiosis in the “omics” age. Biological Bulletin, 223, 44–65.PubMedGoogle Scholar
  74. Michal, G., & Schomburg, D. (Eds.). (1999). Biochemical Pathways: An atlas of biochemistry and molecular biology. New York: Wiley.Google Scholar
  75. Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215–233.CrossRefGoogle Scholar
  76. Moya, A., Huisman, L., Ball, E. E., Hayward, D. C., Grasso, L. C., Chua, C. M., et al. (2012). Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology, 21, 2440–2454.PubMedCrossRefGoogle Scholar
  77. Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156, 516–519.PubMedCrossRefGoogle Scholar
  78. Muscatine, L., & Cernichiari, E. (1969). Assimilation of photosynthetic products of zooxanthellae by a reef coral. The Biological Bulletin, 137, 506–523.CrossRefGoogle Scholar
  79. Muscatine, L., & Porter, J. W. (1977). Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience, 27, 454–460.CrossRefGoogle Scholar
  80. Oku, H., Yahiro, H., & Onaga, K. (2003). Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fisheries Science, 69, 625–631.CrossRefGoogle Scholar
  81. Pandolfi, J. M., Connolly, S. R., Marshall, D. J., & Cohen, A. L. (2011). Projecting coral reef futures under global warming and ocean acidification. Science, 333, 418–422.PubMedCrossRefGoogle Scholar
  82. Papina, M., Meziane, T., & van Woesik, R. (2003). Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135, 533–537.CrossRefGoogle Scholar
  83. Parsons, H. M., Ekman, D. R., Collette, T. W., & Viant, M. R. (2009). Spectral relative standard deviation: A practical benchmark in metabolomics. Analyst, 134, 478–485.PubMedCrossRefGoogle Scholar
  84. Patton, J. S., Abraham, S., & Benson, A. A. (1977). Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: Evidence for a light-driven carbon cycle between symbiont and host. Marine Biology, 44, 235–247.CrossRefGoogle Scholar
  85. Peng, S. E., Chen, C. S., & Song, Y. F. (2012). Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biology Letters, 8, 434–437.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Putnam, H., & Gates, R. D. (2015). Preconditioning the reef-buildling coral Pocillopora damicornis and the potenital for trans-generation acclimatization in coral larvae under future climate change conditions. Journal of Experimental Marine Biology and Ecology, 218, 2365–2372.CrossRefGoogle Scholar
  87. Putron, S., McCorkle, D., Cohen, A., & Dillon, A. (2011). The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs, 30, 321–328.CrossRefGoogle Scholar
  88. Rahav, O., Dubinsky, Z., Achituv, Y., & Falkowski, P. G. (1989). Ammonium metabolism in the zooxanthellate coral, Stylophora pistillata. Proceedings of the Royal Society of London B: Biological Sciences, 236, 325–337.CrossRefGoogle Scholar
  89. Raina, J., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology, 75, 3492–3501.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ramos-Silva, P., Kaandorp, J., Herbst, F., Plasseraud, L., Alcaraz, G., Stern, C., et al. (2014). The skeleton of the staghorn coral Acropora millepora: Molecular and structural characterization. PLoS One, 9, e97454.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37, 1131–1134.CrossRefGoogle Scholar
  92. Rodolfo-Metalpa, R., Martin, S., Ferrier-Pages, C., & Gattuso, J.-P. (2010). Response of the temperate coral Cladocora caespitosa to mid- and long-term explosure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences, 7, 289–300.CrossRefGoogle Scholar
  93. Rosenberg, E., Koren, O., Reshef, L., Efrony, R., & Zilber-Rosenberg, I. (2007). The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5, 355–362.PubMedCrossRefGoogle Scholar
  94. Rowher, F., Serguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1–10.CrossRefGoogle Scholar
  95. Schock, T. B., Stancyk, D. A., Thibodeaux, L., Burnett, K. G., Burnett, L. E., Boroujerdi, A. F., & Bearden, D. W. (2010). Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics, 6, 250–262.CrossRefGoogle Scholar
  96. Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome resilience in resistance of corals to bleaching. Molecular Ecology, 7, 1467–1484.CrossRefGoogle Scholar
  97. Shankar, V., Homer, D., Rigsbee, L., Khamis, H. J., Michail, S., Raymer, M., et al. (2015). The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. The ISME Journal, 9, 1899–1903.PubMedCrossRefGoogle Scholar
  98. Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., et al. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 476, 320–323.PubMedCrossRefGoogle Scholar
  99. Sogin, E. M., Anderson, P., Williams, P., Chen, C.-S., & Gates, R. D. (2014). Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS One, 9, e111274.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Stitt, M., Lunn, J., & Usadel, B. (2010). Arabidopsis and primary photosynthetic metabolism—more than the icing on the cake. The Plant Journal, 61, 1067–1091.PubMedCrossRefGoogle Scholar
  101. Tapiolas, D. M., Motti, C., Holloway, P., & Boyle, S. G. (2010). High levels of acrylate in the Great Barrier Reef coral Acropora millepora. Coral Reefs, 29, 621–625.CrossRefGoogle Scholar
  102. Tarrant, A. M., Atkinson, S., & Atkinson, M. J. (1999). Estrone and estradiol-17β concentration in tissue of the scleractinian coral, Montipora verrucosa. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 122, 85–92.CrossRefGoogle Scholar
  103. Tarrant, A. M., Blomquist, C. H., Lima, P. H., Atkinson, M. J., & Atkinson, S. (2003). Metabolism of estrogens and androgens by scleractinian corals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136, 473–485.CrossRefGoogle Scholar
  104. Thurber, R. L., Barott, K. L., Hall, D., Liu, H., Rodriguez-Mueller, B., Desnues, C., et al. (2008). Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proceedings of the National Academy of Sciences USA, 105, 18413–18418.CrossRefGoogle Scholar
  105. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.CrossRefGoogle Scholar
  106. van Den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & Van Der Werf, M. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.PubMedPubMedCentralCrossRefGoogle Scholar
  107. van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews Molecular Cell Biology, 9, 112–124.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Viant, M. R., Werner, I., Rosenblum, E. S., Gantner, A. S., Tjeerdema, R. S., & Johnson, M. L. (2003). Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiology and Biochemistry, 29, 159–171.CrossRefGoogle Scholar
  109. von Holt, C. (1968). Uptake of glycine and release of nucleoside-polyphosphates by zooxanthellae. Comparative Biochemistry and Physiology, 3, 1071–1079.CrossRefGoogle Scholar
  110. Wagner, N. D., Hillebrand, H., Wacker, A., & Frost, P. C. (2013). Nutritional indicators and their uses in ecology. Ecology Letters, 16, 535–544. doi:10.1111/ele.12067.PubMedCrossRefGoogle Scholar
  111. Whitehead, L. F., & Douglas, A. E. (2003). Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. Journal of Experimental Biology, 206, 3149–3157.PubMedCrossRefGoogle Scholar
  112. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., & Siuzdak, G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences USA, 106, 3698–3703.CrossRefGoogle Scholar
  113. Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 2819–2830.PubMedCrossRefGoogle Scholar
  114. Yancey, P., Heppenstall, M., & Ly, S. (2010). Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiological and Biochemical Zoology, 83, 167–173.PubMedCrossRefGoogle Scholar
  115. Yellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell and Environment, 31, 679–694.PubMedCrossRefGoogle Scholar
  116. Yost, D. M., Wang, L.-H., Fan, T.-Y., Chen, C.-S., Lee, R. W., Sogin, E., & Gates, R. D. (2013). Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology (Jena), 116, 262–269.CrossRefGoogle Scholar
  117. Zhang, P. (1993). Model selection via multifold cross validation. The Annals of Statistics, 21, 299–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of Hawaii at ManoaKaneoheUSA
  2. 2.Department of Computer ScienceCollege of CharlestonCharlestonUSA

Personalised recommendations