, 12:49 | Cite as

Metabolomics as a tool for the authentication of rose extracts used in flavour and fragrance area

  • Laure Saint-Lary
  • Céline Roy
  • Jean-Philippe Paris
  • Jean-François Martin
  • Olivier P. Thomas
  • Xavier Fernandez
Original Article


Natural extracts used in flavour and fragrances are exposed to authentication issues. Companies working in this industrial market acquire the raw materials locally but also abroad, sourcing exotic plants with specific olfactive features or lower costs of production. The geographical origin, the botanical variety, environmental conditions, extraction processes and storage conditions represent some parameters affecting the natural extract quality. All these factors are likely to affect the sensorial properties and especially the organoleptic characteristics of the extract. In addition, fraudulent practices known as adulterations have also an impact on the quality. Sensitive and precise analytical techniques are required to identify adulterations among other sources of variability. In this context, the highly valuable rose absolute was selected as a model study for its importance in perfumery. The existence of two botanical species and several production countries are additional reasons that make this extract an interesting case study. Because the usual GC–MS metabolomic approach is not able to cover the broad range of non-volatile compounds, complementary approaches are required. An UHPLC-ToFMS fingerprinting approach was therefore developed to allow the identification of non-volatile markers of the two closely related species of the genus Rosa. Thus, 12-oxophytodienoic acid was identified as a biomarker (level 2 according to MSI guideline) enabling the distinction between R. centifolia and R. damascena. Our results finally underline the efficiency of the UHPLC-ToFMS metabolomic approach for the qualification of odorant extracts.


Metabolomics Non-targeted Validation Authentication Absolutes UHPLC-ToFMS Rosa centifolia Rosa damascena 

Supplementary material

11306_2016_963_MOESM1_ESM.docx (749 kb)
Supplementary material 1 (DOCX 749 kb)


  1. Aycı, F., Aydınlı, M., Bozdemir, Ö. A., & Tutaş, M. (2005). Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragrance Journal, 20(5), 481–486.CrossRefGoogle Scholar
  2. Bauer, K., Garbe, D., & Surburg, H. (2001). Common fragrance and flavor materials (4th ed.). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  3. Buiarelli, F., Cartoni, G. P., Coccioli, F., & Ravazzi, E. (1991). Analysis of orange and mandarin essential oils by HPLC. Chromatographia, 31(9–10), 489–492.CrossRefGoogle Scholar
  4. De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.CrossRefPubMedGoogle Scholar
  5. Do, T.K.T., Hadji-Minaglou, F., Antoniotti, S., & Fernandez, X. (2015). Authenticity of essential oils. Trends in Analytical Chemistry 66, 146–157.Google Scholar
  6. Fernandez, X., Lizzani-Cuvelier, L., Loiseau, A.-M., Périchet, C., & Delbecque, C. (2003). Volatile constituents of benzoin gums: Siam and Sumatra. Part 1. Flavour Fragrance Journal, 18(4), 328–333.CrossRefGoogle Scholar
  7. Garnero, J., Guichard, G., & Buil, P. (1976). L’huile essentielle et la concrète de rose de Turquie. Rivista italiana essenze profumi piante officinali aromi saponi cosmetici aerosol n° ind (1976.03).Google Scholar
  8. Glauser, G., Veyrat, N., Rochat, B., Wolfender, J. L., & Turlings, T. C. (2013). Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics: A systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. Journal of Chromatography A, 1292, 151–159.CrossRefPubMedGoogle Scholar
  9. Guenther, E. (1952). The essential oils. New York: D. Van Nostrand Company.Google Scholar
  10. Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Kärenlampi, S., & Aharoni, A. (2008). Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria x ananassa) flowers. Phytochemistry, 69(13), 2463–2481.CrossRefPubMedGoogle Scholar
  11. Jirovetz, L., Buchbauer, G., Stoyanova, A., Balinova, A., Guangjiun, Z., & Xihan, M. (2005). Solid phase microextraction/gas chromatographic and olfactory analysis of the scent and fixative properties of the essential oil of Rosa damascena L. from China. Flavour Fragrance Journal, 20(1), 7–12.CrossRefGoogle Scholar
  12. Kim, N., Kim, K., Choi, B. Y., Lee, D., Shin, Y. S., Bang, K. H., et al. (2011). Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS. Journal of Agriculture and Food Chemistry, 59(19), 10435–10441.CrossRefGoogle Scholar
  13. Kreis, P., & Mosandl, A. (1992). Chiral compounds of essential oils. Part XII. Authenticity control of rose oils, using enantioselective multidimensional gas chromatography. Flavour Fragrance Journal, 7(4), 199–203.CrossRefGoogle Scholar
  14. Ku, K. M., Choi, J. N., Kim, J., Kim, J. K., Yoo, L. G., Lee, S. J., et al. (2010). Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agriculture and Food Chemistry, 58(1), 418–426.CrossRefGoogle Scholar
  15. Li, Y-q, Kong, D-x, & Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Industrial Crops and Products, 41, 269–278.CrossRefGoogle Scholar
  16. Masson, J., Liberto, E., Brevard, H., Bicchi, C., & Rubiolo, P. (2014). A metabolomic approach to quality determination and authentication of raw plant material in the fragrance field. Iris rhizomes: A case study. Journal of Chromatography A, 1368, 143–154.CrossRefPubMedGoogle Scholar
  17. Mattoli, L., Cangi, F., Maidecchi, A., Ghiara, C., Ragazzi, E., Tubaro, M., et al. (2006). Metabolomic fingerprinting of plant extracts. Journal of Mass Spectrometry, 41(12), 1534–1545.CrossRefPubMedGoogle Scholar
  18. Mazollier, A. (2012). Développement de méthodologies analytiques et statistiques innovantes pour le contrôle de l’authenticité de matières premières pour les industries de la cosmétique et de la parfumerie, PhD in chemistry, Université Claude Bernard Lyon 1, Lyon.Google Scholar
  19. McHale, D., & Sheridan, J. B. (1988). Detection of adulteration of cold-pressed lemon oil. Flavour Fragrance Journal, 3(3), 127–133.CrossRefGoogle Scholar
  20. Mehl, F., Marti, G., Boccard, J., Debrus, B., Merle, P., Delort, E., et al. (2014). Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: A metabolomic approach. Food Chemistry, 143, 325–335.CrossRefPubMedGoogle Scholar
  21. Monin, C. (2010). L’Encyclopédie des Matières Premières Naturelles pour la Parfumerie. vol Hubsoft.Google Scholar
  22. Naves, Y.-R. (1974). Technologie et Chimie des Parfums Naturels. Paris: Masson et CIE.Google Scholar
  23. Ravid, U., Putievsky, E., Katzir, I., Ikan, R., & Weinstein, V. (1992). Determination of the enantiomeric composition of citronellol in essential oils by chiral GC analysis on a modified γ-cyclodextrin phase. Flavour Fragrance Journal, 7(4), 235–238.CrossRefGoogle Scholar
  24. Salgueiro, L., Martins, A. P., & Correia, H. (2010). Raw materials: the importance of quality and safety. A review. Flavour Fragrance Journal, 25(5), 253–271.CrossRefGoogle Scholar
  25. Saraswathy, A., Shakila, R., & Sunilkumar, K. N. (2010). HPTLC fingerprint profile of some cinnamomum species. Pharmacognosy Journal, 2(8), 211–215.CrossRefGoogle Scholar
  26. Schipilliti, L., Dugo, G., Santi, L., Dugo, P., & Mondello, L. (2011). Authentication of bergamot essential oil by gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS). Journal of Essential Oil Research, 23(2), 60–71.Google Scholar
  27. Ulusoy, S., Bosgelmez-Tinaz, G., & Secilmis-Canbay, H. (2009). Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Current Microbiology, 59(5), 554–558.CrossRefPubMedGoogle Scholar
  28. van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141.CrossRefPubMedGoogle Scholar
  29. Xiong, A., Yang, L., Ji, L., Wang, Z., Yang, X., Chen, Y., et al. (2012). UPLC-MS based metabolomics study on Senecio scandens and S. vulgaris: an approach for the differentiation of two Senecio herbs with similar morphology but different toxicity. Metabolomics, 8(4), 614–623.CrossRefGoogle Scholar
  30. Zrira, S. (2006). La rose du Dadès.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laure Saint-Lary
    • 1
    • 2
    • 3
  • Céline Roy
    • 3
  • Jean-Philippe Paris
    • 2
  • Jean-François Martin
    • 4
  • Olivier P. Thomas
    • 1
    • 5
  • Xavier Fernandez
    • 1
  1. 1.Institut de Chimie de Nice, UMR 7272 Université Nice Sophia AntipolisCNRS, UFR SciencesNice Cedex 2France
  2. 2.Payan BertrandGrasseFrance
  3. 3.European Research Institute on Natural Ingredients (ERINI)GrasseFrance
  4. 4.INRA ToxAlimUMR 1331ToulouseFrance
  5. 5.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix-Marseille UniversitéCNRS, IRD, Avignon UniversitéMarseilleFrance

Personalised recommendations