Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts


Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation, however for aroma and flavor formation in wine, non-Saccharomyces species can have a powerful effect. This study aimed to compare untargeted volatile compound profiles from SPME–GCxGC-TOF-MS and sensory analysis data of Sauvignon blanc wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) where commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each wine showed a distinct profile both sensorially and chemically. SC and CZ wines were the most distinct in both of these cases. SC wine had guava, grapefruit, banana, and pineapple aromas while CZ wine was driven by fermented apple, dried peach/apricot, and stewed fruit as well as sour flavor. Chemically over 300 unique features were identified as significantly different across the fermentations. SC wine had the highest number of esters in the highest relative concentration but all the yeasts had distinct ester profiles. CZ wine displayed the highest number of terpenes in high concentration but also produced a large amount of acetic acid. KA wine was high in ethyl acetate. TD wine had fewer esters but three distinctly higher thiol compounds. LT wine showed a relatively high number of increased acetate esters and certain terpenes. PK wine had some off odor compounds while the MP wine had high levels of methyl butyl-, methyl propyl-, and phenethyl esters. Overall, this study gives a more detailed profile of these yeasts contribution to Sauvignon blanc wine than previously reported.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Andorrà, I., Berradre, M., Rozès, N., Mas, A., Guillamón, J. M., & Esteve-Zarzoso, B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 231(2), 215–224. doi:10.1007/s00217-010-1272-0.

  2. Andorrà, I., Berradre, M., Mas, A., Esteve-Zarzoso, B., & Guillamón, J. M. (2012). Effect of mixed culture fermentations on yeast populations and aroma profile. LWT Food Science and Technology, 49(1), 8–13. doi:10.1016/j.lwt.2012.04.008.

  3. Anfang, N., Brajkovich, M., & Goddard, M. R. (2009). Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Australian Journal of Grape and Wine Research, 15(1), 1–8. doi:10.1111/j.1755-0238.2008.00031.x.

  4. Azzolini, M., Fedrizzi, B., Tosi, E., et al. (2012). Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Research and Technology, 235(2), 303–313. doi:10.1007/s00217-012-1762-3.

  5. Beckner Whitener, M. E., Carlin, S., Jacobson, D., et al. (2015). Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT Food Science and Technology, 64(1), 412–422. doi:10.1016/j.lwt.2015.05.018.

  6. Benito, Á., Calderón, F., Palomero, F., & Benito, S. (2015). Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules, 20(6), 9510–9523. doi:10.3390/molecules20069510.

  7. Carrau, F. M., Medina, K., Boido, E., et al. (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243(1), 107–115. doi:10.1016/j.femsle.2004.11.050.

  8. Charoenchai, C., Fleet, G. H., Henschke, P. A., & Todd, B. E. N. (1997). Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Australian Journal of Grape and Wine Research, 3(1984), 2–8.

  9. Ciani, M., & Comitini, F. (2010a). Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research,. doi:10.1111/j.1567-1364.2009.00579.x.

  10. Ciani, M., & Comitini, F. (2010b). Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 61(1), 25–32. doi:10.1007/s13213-010-0069-5.

  11. Ciani, M., & Maccarelli, F. (1998). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14, 199–203.

  12. Ciani, M., Beco, L., & Comitini, F. (2006). Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. International Journal of Food Microbiology, 108(2), 239–245. doi:10.1016/j.ijfoodmicro.2005.11.012.

  13. Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21(2), 149–155. doi:10.1016/S0740-0020(03)00063-7.

  14. Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2005). Influence of sequential yeast mixtures on wine fermentation. International Journal of Food Microbiology, 98(3), 301–308. doi:10.1016/j.ijfoodmicro.2004.06.007.

  15. Comitini, F., Gobbi, M., Domizio, P., et al. (2011). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 28(5), 873–882. doi:10.1016/

  16. Cordero-Bueso, G., Esteve-Zarzoso, B., Cabellos, J. M., Gil-Díaz, M., & Arroyo, T. (2012). Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). European Food Research and Technology, 236(1), 193–207. doi:10.1007/s00217-012-1874-9.

  17. Dashko, S., Zhou, N., Tinta, T., et al. (2015). Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. Journal of Industrial Microbiology and Biotechnology, 42(7), 997–1010. doi:10.1007/s10295-015-1620-y.

  18. Dias, L., Dias, S., Sancho, T., et al. (2003). Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiology, 20(5), 567–574. doi:10.1016/S0740-0020(02)00152-1.

  19. Domizio, P., Romani, C., Lencioni, L., et al. (2011). Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. International Journal of Food Microbiology, 147(3), 170–180. doi:10.1016/j.ijfoodmicro.2011.03.020.

  20. Dubourdieu, D., Tominaga, T., Masneuf, I., Peyrot des Gachons, C., & Murat, M. L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. American Journal of Enology and Viticulture, 57(1), 81–88.

  21. Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., & Cocolin, L. (2015). Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33–40. doi:10.1016/j.ijfoodmicro.2015.01.009.

  22. Esteve-Zarzoso, B., Manzanares, P., Ramón, D., & Querol, A. (1998). The role of non-Saccharomyces yeasts in industrial winemaking. International Microbiology, 1(2), 143–148.

  23. Fernández, M., Úbeda, J. F., & Briones, A. I. (2000). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. International Journal of Food Microbiology, 59(1–2), 29–36. doi:10.1016/S0168-1605(00)00283-X.

  24. Fleet, G. H. (1993). Wine microbiology and biotechnology. In: G. H. Fleet, Ed. (1st ed.). Boca Raton: CRC Press.

  25. Fleet, G. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86(1–2), 11–22. doi:10.1016/S0168-1605(03)00245-9.

  26. Gobbi, M., Comitini, F., Domizio, P., et al. (2013). Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiology, 33(2), 271–281. doi:10.1016/

  27. Hutkins, R. W. (2006). Microbiology and technology of fermented foods (1st ed.). Ames, Iowa: Blackwell Publishing Ltd.

  28. Johnson, E. A., & Echavarri-Erasun, C. (2011). Yeast biotechnology. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts (Fifth ed., pp. 21–44). Elsevier, London. doi:10.1016/B978-0-444-52149-1.00003-3

  29. Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27(1), 15–39.

  30. Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14, 215–237. doi:10.1111/1567-1364.12111.

  31. Kapsopoulou, K., Mourtzini, A., Anthoulas, M., & Nerantzis, E. (2006). Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 23(5), 735–739. doi:10.1007/s11274-006-9283-5.

  32. Kurtzman, C. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Research, 4(3), 233–245. doi:10.1016/S1567-1356(03)00175-2.

  33. Lambrechts, M. G., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma—a review. South African Journal of Enology and Viticulture, 21(June), 97–129.

  34. Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food. In D. Heldman, D. Golden, R. Hartel, H. Haymann, J. Hotchkiss, M. Johnson, et al. (Eds.), Sensory evaluation of foodprinciples and practices (Second., pp. 433–449). London. doi:10.1007/978-1-4419-6488-5

  35. Maio, S. D., Genna, G., Gandolfo, V., et al. (2012). Presence of Candida zemplinina in Sicilian musts and selection of a strain for wine mixed fermentations. South African Journal of Enology and Viticulture, 33(1), 80–87.

  36. Majdak, A., & Herjavec, S. (2002). Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae strains. Food Technology and Biotechnology, 40(2), 103–109.

  37. Moreira, N., Mendes, F., Pereira, O., Guedes de Pinho, P., Hogg, T., & Vasconcelos, I. (2002). Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Analytica Chimica Acta, 458(1), 157–167. doi:10.1016/S0003-2670(01)01618-X.

  38. Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, 31(3), 274–295. doi:10.1007/s00357-014-9161-z.

  39. Nieuwoudt, H. H., Pretorius, I. S., Bauer, F. F., Nel, D. G., & Prior, B. A. (2006). Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy. Journal of Microbiological Methods, 67(2), 248–256. doi:10.1016/j.mimet.2006.03.019.

  40. Pina, C., Santos, C., Couto, J. A., & Hogg, T. (2004). Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiology, 21(4), 439–447. doi:10.1016/

  41. Rantsiou, K., Dolci, P., Giacosa, S., et al. (2012). Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Applied and Environmental Microbiology, 78(6), 1987–1994. doi:10.1128/AEM.06768-11.

  42. Renault, P., Miot-Sertier, C., Marullo, P., et al. (2009). Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. International Journal of Food Microbiology, 134(3), 201–210.

  43. Rojas, V., Gil, J. V., Piaga, F., & Manzanares, P. (2001). Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology, 70(3), 283–289. doi:10.1016/S0168-1605(01)00552-9.

  44. Romano, P., Fiore, C., Paraggio, M., Caruso, M., & Capece, A. (2003a). Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86(1–2), 169–180. doi:10.1016/S0168-1605(03)00290-3.

  45. Romano, P., Granchi, L., Caruso, M., et al. (2003b). The species-specific ratios of 2,3-butanediol and acetoin isomers as a tool to evaluate wine yeast performance. International Journal of Food Microbiology, 86(1–2), 163–168. doi:10.1016/S0168-1605(03)00254-X.

  46. Saayman, M., & Viljoen-Bloom, M. (2006). The biochemistry of malic acid metabolism by wine yeasts—a review. South African Journal of Enology and Viticulture, 27(2), 113–126.

  47. Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., et al. (2012). Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology, 32(2), 243–253. doi:10.1016/

  48. Salmon, J. M. (1987). L-malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) Biomembranes, 901(1), 30–34. doi:10.1016/0005-2736(87)90253-7.

  49. Strimmer, K. (2008a). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24(12), 1461–1462. doi:10.1093/bioinformatics/btn209.

  50. Strimmer, K. (2008b). A unified approach to false discovery rate estimation. BMC Bioinformatics, 9(1), 303. doi:10.1186/1471-2105-9-303.

  51. Sumner, L. W., Samuel, T., Noble, R., Gmbh, S. D., Barrett, D., Beale, M. H., & Hardy, N. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.1007/s11306-007-0082-2.

  52. Sun, S. Y., Gong, H. S., Jiang, X. M., & Zhao, Y. P. (2014). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiology, 44C, 15–23. doi:10.1016/

  53. Tomic, O., Luciano, G., Nilsen, A., Hyldig, G., Lorensen, K., & Næs, T. (2009). Analysing sensory panel performance in a proficiency test using the PanelCheck software. European Food Research and Technology, 230(3), 497–511. doi:10.1007/s00217-009-1185-y.

  54. Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998). Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour and Fragrance Journal, 13(3), 159–162. doi:10.1002/(SICI)1099-1026(199805/06)13:3<159:AID-FFJ709>3.0.CO;2-7.

  55. Van Breda, V., Jolly, N., & van Wyk, J. (2013). Characterisation of commercial and natural Torulaspora delbrueckii wine yeast strains. International Journal of Food Microbiology, 163(2–3), 80–88. doi:10.1016/j.ijfoodmicro.2013.02.011.

  56. Viana, F., Gil, J. V., Genove, S., Valle, S., & Manzanares, P. (2008). Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, 25, 778–785. doi:10.1016/

  57. Villena, M., Iranzo, J., & Pérez, A. (2007). β-Glucosidase activity in wine yeasts: Application in enology. Enzyme and Microbial Technology, 40(3), 420–425. doi:10.1016/j.enzmictec.2006.07.013.

  58. Wang, C., Mas, A., & Esteve-Zarzoso, B. (2015). Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. International Journal of Food Microbiology, 206, 67–74. doi:10.1016/j.ijfoodmicro.2015.04.022.

  59. Zalacain, A., Marín, J., Alonso, G. L., & Salinas, M. R. (2007). Analysis of wine primary aroma compounds by stir bar sorptive extraction. Talanta, 71(4), 1610–1615. doi:10.1016/j.talanta.2006.07.051.

  60. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. The Analyst, 137(2), 293. doi:10.1039/c1an15605e.

  61. Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., & Masneuf-Pomarede, I. (2008). Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology, 125(2), 197–203. doi:10.1016/j.ijfoodmicro.2008.04.001.

  62. Zott, K., Thibon, C., Bely, M., Lonvaud-Funel, A., Dubourdieu, D., & Masneuf-Pomarede, I. (2011). The grape must non-Saccharomyces microbial community: impact on volatile thiol release. International Journal of Food Microbiology, 151(2), 210–215. doi:10.1016/j.ijfoodmicro.2011.08.026.

Download references


This work was supported by funds from the GMPF program and Fondazione Edmund Mach (FEM) as well as research Grant VKR023371 from VILLUMFONDEN. We would like to thank Lallemand and Chr. Hansen for donating the commercial yeast strains used in this study. Also, the South African National Research Foundation ( and Human Resources Programme (THRIP) and Winetech for financial assistance. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Correspondence to Urska Vrhovsek.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 362 kb)

Table 1S is provided in its native Excel format for ease of use. Filters are in place for each header so that data may be easily sorted for review. The cluster values provided indicate the hierarchical clustering order for each extraction time (10 s, 5 m, 30 m). The date presented are the average peak areas after unit variance scaling for each yeast responsible for the start of fermentation. SC represents S. cerevisiae, TD represents T. delbrueckii, CZ represents C. zemplinina, KA represents K. aerobia, LT represents L. thermotolerans, PK represents P. kluyveri, and MP represents M. pulcherrima. The data is color coded such that high values are shown in red, low values in blue and all other values fall on a gradient between the two colors. Supplementary material 2 (XLSX 110 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beckner Whitener, M.E., Stanstrup, J., Panzeri, V. et al. Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics 12, 53 (2016).

Download citation


  • Non-Saccharomyces
  • Sensory
  • Sauvignon blanc