, 12:45 | Cite as

Obesity-related metabolite profiles of black women spanning the epidemiologic transition

  • Lara R. Dugas
  • Elin Chorell
  • Jacob Plange-Rhule
  • Estelle V. Lambert
  • Guichan Cao
  • Richard S. Cooper
  • Brian T. Layden
  • Denise Scholten
  • Tommy Olsson
  • Amy Luke
  • Julia H. Goedecke
Original Article


In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US (N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana (N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity.


Obesity African-origin Amino acid profile 



The authors would like to acknowledge the site-specific clinic staff members as well as the 2500 participants. LRD, EC, JG all conceived the idea, performed the analyses and wrote the manuscript. JPR, EVL, AL, LD, EC all collected the data and wrote the manuscript, EC, GC, LRD and DMS performed the analyses and BTL and RC wrote the manuscript. METS is funded in part by the National Institutes of Health (1R01DK80763). The metabolomics analysis is funded by Thuringsstiftelsen.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2016_960_MOESM1_ESM.xlsx (20 kb)
Supplementary material 1 (XLSX 20 kb)
11306_2016_960_MOESM2_ESM.docx (39 kb)
Supplementary material 2 (DOCX 39 kb)


  1. Bates, C. J., Mishra, G. D., & Prentice, A. (2004). Gamma-tocopherol as a possible marker for nutrition-related risk: results from four National Diet and Nutrition Surveys in Britain. The British journal of nutrition, 92, 137–150.CrossRefPubMedGoogle Scholar
  2. Bouchard-Mercier, A., Rudkowska, I., Lemieux, S., Couture, P., & Vohl, M. C. (2014). An interaction effect between glucokinase gene variation and carbohydrate intakes modulates the plasma triglyceride response to a fish oil supplementation. Genes & nutrition, 9, 395.CrossRefGoogle Scholar
  3. Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American journal of clinical nutrition, 79, 537–543.PubMedGoogle Scholar
  4. Carriquiry, A. L. (2003). Estimation of usual intake distributions of nutrients and foods. Journal of Nutrition, 133, 601S–608S.PubMedGoogle Scholar
  5. Cheng, J.-S., Niu, Y.-H., Lu, S.-H., & Yuan, Y.-J. (2012). Metabolome analysis reveals ethanolamine as potential marker for improving lipid accumulation of model photosynthetic organisms.Google Scholar
  6. Corona, E., Chen, R., Sikora, M., Morgan, A. A., Patel, C. J., Ramesh, A., et al. (2013). Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration. PLoS Genetics, 9, e1003447.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dobrzyn, P., Jazurek, M., & Dobrzyn, A. (2010). Stearoyl-CoA desaturase and insulin signaling–what is the molecular switch? Biochimica et Biophysica Acta, 1797, 1189–1194.CrossRefPubMedGoogle Scholar
  8. Dugas, L. R., Harders, R., Merrill, S., Ebersole, K., Shoham, D. A., Rush, E. C., et al. (2011). Energy expenditure in adults living in developing compared with industrialized countries: a meta-analysis of doubly labeled water studies. American Journal of Clinical Nutrition, 93, 427–441.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Efron, B., & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The American Statistician., 37, 36–48.Google Scholar
  10. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499–502.PubMedGoogle Scholar
  11. Goedecke, J. H., Dave, J. A., Faulenbach, M. V., Utzschneider, K. M., Lambert, E. V., West, S., et al. (2009). Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care, 32, 860–865.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Goedecke, J., Peer, N., Steyn, K., Victor, H., & Levitt, N. S. (2014). Insulin secretion in relation to insulin sensitivity in black South African men and women with increasing age. Johannesburg, South Africa: JEMDSA.Google Scholar
  13. Golden, S. H., Brown, A., Cauley, J. A., Chin, M. H., Gary-Webb, T. L., Kim, C., et al. (2012). Health disparities in endocrine disorders: biological, clinical, and nonclinical factors–an Endocrine Society scientific statement. Journal of Clinical Endocrinology and Metabolism, 97, E1579–E1639.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guertin, K. A., Moore, S. C., Sampson, J. N., Huang, W. Y., Xiao, Q., Stolzenberg-Solomon, R. Z., et al. (2014). Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. The American journal of clinical nutrition, 100, 208–217.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Havel, P. J. (2002). Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Current Opinion in Lipidology, 13, 51–59.CrossRefPubMedGoogle Scholar
  16. Jiye, A., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., Marklund, S. L., & Moritz, T. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77, 8086–8094.Google Scholar
  17. Joffe, Y. T., van der Merwe, L., Evans, J., Collins, M., Lambert, E. V., September, A. V., & Goedecke, J. H. (2014). Interleukin-6 gene polymorphisms, dietary fat intake, obesity and serum lipid concentrations in black and white South African women. Nutrients, 6, 2436–2465.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jonsson, P., Johansson, A. I., Gullberg, J., Trygg, J., Jiye, A., Grung, B., Marklund, S., Sjostrom, M., Antti, H., & Moritz, T. (2005). High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Analytical Chemistry, 77, 5635–5642.Google Scholar
  19. Jonsson, P., Johansson, E. S., Wuolikainen, A., Lindberg, J., Schuppe-Koistinen, I., Kusano, M., et al. (2006). Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS datas - A potential tool for multi-parametric diagnosis. Journal of Proteome Research, 5, 1407–1414.CrossRefPubMedGoogle Scholar
  20. Jonsson, P., Wuolikainen, A., Thysell, E., Chorell, E., Stattin, P., Wikstrom, P., & Antti, H. (2015). Constrained randomization and multivariate effect projections improve information extraction and biomarker pattern discovery in metabolomics studies involving dependent samples. Metabolomics.Google Scholar
  21. Khitan, Z., & Kim, D. H. (2013). Fructose: a key factor in the development of metabolic syndrome and hypertension. Journal of nutrition and metabolism, 2013, 682673.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim, T. N., Park, M. S., Yang, S. J., Yoo, H. J., Kang, H. J., Song, W., et al. (2010). Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care, 33, 1497–1499.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kodama, K., Tojjar, D., Yamada, S., Toda, K., Patel, C. J., & Butte, A. J. (2013). Ethnic Differences in the Relationship Between Insulin Sensitivity and Insulin Response: A systematic review and meta-analysis. Diabetes Care, 36, 1789–1796.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Luke, A., Bovet, P., Forrester, T. E., Lambert, E. V., Plange-Rhule, J., Schoeller, D. A., et al. (2012). Protocol for the modeling the epidemiologic transition study: a longitudinal observational study of energy balance and change in body weight, diabetes and cardiovascular disease risk. BMC Public Health, 11, 927.CrossRefGoogle Scholar
  25. Luke, A., Bovet, P., Plange-Rhule, J., Forrester, T. E., Lambert, E. V., Schoeller, D. A., et al. (2014). A mixed ecologic-cohort comparison of physical activity & weight among young adults from five populations of African origin. BMC public health, 14, 397.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luke, A., Durazo-Arvizu, R., Rotimi, C., Prewitt, T. E., Forrester, T., Wilks, R., et al. (1997). Relation between body mass index and body fat in black population samples from Nigeria, Jamaica, and the United States. American Journal of Epidemiology, 145, 620–628.CrossRefPubMedGoogle Scholar
  27. Ma, J., Folsom, A. R., Shahar, E., & Eckfeldt, J. H. (1995). Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. The American journal of clinical nutrition, 62, 564–571.PubMedGoogle Scholar
  28. Mathias, R. A., Sergeant, S., Ruczinski, I., Torgerson, D. G., Hugenschmidt, C. E., Kubala, M., et al. (2014). The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genetics, 12, 50.CrossRefGoogle Scholar
  29. Moore, S. C., Matthews, C. E., Sampson, J. N., Stolzenberg-Solomon, R. Z., Zheng, W., Cai, Q., et al. (2014). Human metabolic correlates of body mass index. Metabolomics: Official journal of the Metabolomic Society, 10, 259–269.CrossRefGoogle Scholar
  30. Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., et al. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American journal of physiology. Renal physiology, 290, F625–F631.CrossRefPubMedGoogle Scholar
  31. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15, 606–614.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., Haqq, A. M., Shah, S. H., Arlotto, M., Slentz, C. A., Rochon, J., Gallup, D., Ilkayeva, O., Wenner, B. R., Yancy, W. S., Jr., Eisenson, H., Musante, G., Surwit, R. S., Millington, D. S., Butler, M. D., & Svetkey, L. P. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.Google Scholar
  33. Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384, 766–781.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Orcholski, L., Luke, A., Plange-Rhule, J., Bovet, P., Forrester, T. E., Lambert, E. V., et al. (2015). Under-reporting of dietary energy intake in five populations of the African diaspora. The British journal of nutrition, 113, 464–472.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Osgood, K., Krakoff, J., & Thearle, M. (2013). Serum uric acid predicts both current and future components of the metabolic syndrome. Metabolic syndrome and related disorders, 11, 157–162.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Redestig, H., Fukushima, A., Stenlund, H., Moritz, T., Arita, M., Saito, K., & Kusano, M. (2009). Compensation for Systematic Cross-Contribution Improves Normalization of Mass Spectrometry Based Metabolomics Data. Analytical Chemistry, 81, 7974–7980.CrossRefPubMedGoogle Scholar
  37. Soltani, Z., Rasheed, K., Kapusta, D. R., & Reisin, E. (2013). Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Current Hypertension Reports, 15, 175–181.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steyn, N. P., Nel, J. H., Parker, W. A., Ayah, R., & Mbithe, D. (2011). Dietary, social, and environmental determinants of obesity in Kenyan women. Scand J Public Health, 39, 88–97.CrossRefPubMedGoogle Scholar
  39. Thysell, E., Chorell, E., Svensson, M. B., Jonsson, P., & Antti, H. (2012). Validated and predictive processing of gas chromatography-mass spectrometry based metabolomics data for large scale screening studies, diagnostics and metabolite pattern verification. Metabolites, 2, 796–817.CrossRefPubMedPubMedCentralGoogle Scholar
  40. United Nations Development Programme. Human Development Index (HDI) [Online]. New York. Available:
  41. Vessby, B. (2003). Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Current Opinion in Lipidology, 14, 15–19.CrossRefPubMedGoogle Scholar
  42. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang, T. J., Ngo, D., Psychogios, N., Dejam, A., Larson, M. G., Vasan, R. S., et al. (2013). 2-Aminoadipic acid is a biomarker for diabetes risk. The Journal of Clinical Investigation, 123, 4309–4317.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wong, S. L., Colley, R., Connor Gorber, S., & Tremblay, M. (2011). Actical accelerometer sedentary activity thresholds for adults. Journal of Physical Activity and Health, 8, 587–591Google Scholar
  45. Xie, B., Waters, M. J., & Schirra, H. J. (2012). Investigating potential mechanisms of obesity by metabolomics. Journal of Biomedicine and Biotechnology, 805683.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lara R. Dugas
    • 1
  • Elin Chorell
    • 2
  • Jacob Plange-Rhule
    • 3
  • Estelle V. Lambert
    • 4
  • Guichan Cao
    • 1
  • Richard S. Cooper
    • 1
  • Brian T. Layden
    • 5
    • 6
  • Denise Scholten
    • 5
  • Tommy Olsson
    • 2
  • Amy Luke
    • 1
  • Julia H. Goedecke
    • 7
  1. 1.Public Health Sciences, Stritch School of MedicineLoyola University ChicagoMaywoodUSA
  2. 2.Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
  3. 3.Kwame Nkrumah University of Science and TechnologyKumasiGhana
  4. 4.Research Unit for Exercise Science and Sports MedicineUniversity of Cape TownCape TownSouth Africa
  5. 5.Division of Endocrinology, Metabolism and Molecular MedicineNorthwestern UniversityEvanstonUSA
  6. 6.Jesse Brown Veterans Affairs Medical CenterChicagoUSA
  7. 7.Non-Communicable Disease Research UnitSouth African Medical Research CouncilCape TownSouth Africa

Personalised recommendations