Advertisement

Metabolomics

, 12:19 | Cite as

Tissue sample stability: thawing effect on multi-organ samples

  • Frida Torell
  • Kate Bennett
  • Silvia Cereghini
  • Stefan Rännar
  • Katrin Lundstedt-Enkel
  • Thomas Moritz
  • Cecile Haumaitre
  • Johan TryggEmail author
  • Torbjörn Lundstedt
Short Communication

Abstract

Correct handling of samples is essential in metabolomic studies. Improper handling and prolonged storage of samples has unwanted effects on the metabolite levels. The aim of this study was to identify the effects that thawing has on different organ samples. Organ samples from gut, kidney, liver, muscle and pancreas were analyzed for a number of endogenous metabolites in an untargeted metabolomics approach, using gas chromatography time of flight mass spectrometry at the Swedish Metabolomics Centre, Umeå University, Sweden. Multivariate data analysis was performed by means of principal component analysis and orthogonal projection to latent structures discriminant analysis. The results showed that the metabolic changes caused by thawing were almost identical for all organs. As expected, there was a marked increase in overall metabolite levels after thawing, caused by increased protein and cell degradation. Cholesterol was one of the eight metabolites found to be decreased in the thawed samples in all organ groups. The results also indicated that the muscles are less susceptible to oxidation compared to the rest of the organ samples.

Keywords

Thawing effect Metabolomics OPLS Multivariate analysis Multi-organ 

Notes

Acknowledgments

The authors would like to thank Professor Paul Gissen. The authors would also like to extend their sincere gratitude to Mélanie Fabre for technical support. This research was supported by the Swedish Research Council Grant No. 2011-6044 (to JT), the Biology of Liver and Pancreatic Development and Disease (BOLD) Marie Curie Initial Training Network (MCITN) within EU’s FP7 programme (to TL, JT, KB, FT, SC, CH, TM) and the CNRS and Université Pierre et Marie Curie (to SC, CH), the Institut National de la Santé et de la Recherche Médicale, INSERM (to SC), the Société Francophone du Diabète and Emergence UPMC (to CH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

Conceived and designed the experiments: TL, KLE, SC. Performed the experiments: CH, SC, KB. Analyzed the data: FT, TL, JT, TM, SR, CH, SC, KB. Wrote the paper: FT, KB, SC, CH, JT, TM, TL.

Compliance with ethical standards

Conflict of interest

JT, TM and TL are shareholders of AcureOmics AB. No financing has been received from this company. The authors declare no other competing interests.

Supplementary material

11306_2015_933_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. A, J., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77(24), 8086–8094.CrossRefPubMedGoogle Scholar
  2. Breier, M., Wahl, S., Prehn, C., Fugmann, M., Ferrari, U., Weise, M., et al. (2014). Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One, 9(2), e89728.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(8–10), 341–351.CrossRefGoogle Scholar
  4. Comstock, G. W., Burke, A. E., Norkus, E. P., Gordon, G. B., Hoffman, S. C., & Helzlsouer, K. J. (2001). Effects of repeated freeze-thaw cycles on concentrations of cholesterol, micronutrients, and hormones in human plasma and serum. Clinical Chemistry, 47(1), 139–142.PubMedGoogle Scholar
  5. Comstock, G. W., Burke, A. E., Norkus, E. P., Gordon, G. B., Hoffman, S. C., & Helzlsouer, K. J. (2008). Effects of repeated freeze-thaw cycles on concentrations of cholesterol, micronutrients, and hormones in human plasma and serum. American Journal of Epidemiology, 168(7), 827–830.CrossRefPubMedGoogle Scholar
  6. Cuhadar, S., Koseoglu, M., Atay, A., & Dirican, A. (2013). The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochemia Medica (Zagreb), 23(1), 70–77.CrossRefGoogle Scholar
  7. Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics, 22(11–12), 594–600.CrossRefGoogle Scholar
  8. Eriksson L, Johansson E, Kettaneh-Wold K, Trygg J, Wikström C, & Wold, S. (2013). PCA. In Multi- and megavariate data analysis (pp. 39–62). Umeå: MKS Umetrics AB.Google Scholar
  9. Eriksson L, Johansson E, Kettaneh-Wold K, Trygg J, Wikström C, & Wold, S. (2013) Identification of discriminating variables. In Multi- and megavariate data analysis (pp. 215–321). Umeå: MKS Umetrics AB.Google Scholar
  10. Evans, K., Mitcheson, J., & Laker, M. F. (1997). Effect of storage at −70 degrees C on lipid, lipoprotein and apolipoprotein concentrations. Clinica Chimica Acta, 258(2), 219–229.CrossRefGoogle Scholar
  11. Jackson, J. E. (1991). A user’s guide to principal components. New York: John Wiley.CrossRefGoogle Scholar
  12. Jonsson, P., Johansson, A. I., Gullberg, J., Trygg, J., A, J., Grung, B., et al. (2005). High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Analytical Chemistry, 77(17), 5635–5642.CrossRefPubMedGoogle Scholar
  13. Key, T., Oakes, S., Davey, G., Moore, J., Edmond, L. M., McLoone, U. J., & Thurnham, D. I. (1996). Stability of vitamins A, C, and E, carotenoids, lipids, and testosterone in whole blood stored at 4 degrees C for 6 and 24 hours before separation of serum and plasma. Cancer Epidemiology, Biomarkers and Prevention, 5(10), 811–814.PubMedGoogle Scholar
  14. Kronenberg, F., Lobentanz, E. M., König, P., Utermann, G., & Dieplinger, H. (1994). Effect of sample storage on the measurement of lipoprotein[a], apolipoproteins B and A-IV, total and high density lipoprotein cholesterol and triglycerides. Journal of Lipid Research, 35, 1318–1328.PubMedGoogle Scholar
  15. Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.CrossRefPubMedGoogle Scholar
  16. van Eijsden, M., van der Wal, M. F., Hornstra, G., & Bonsel, G. J. (2005). Can whole-blood samples be stored over 24 hours without compromising stability of C-reactive protein, retinol, ferritin, folic acid, and fatty acids in epidemiologic research? Clinical Chemistry, 51(1), 230–232.CrossRefPubMedGoogle Scholar
  17. Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.CrossRefPubMedGoogle Scholar
  18. Zivkovic, A. M., Wiest, M. M., Nguyen, U. T., Davis, R., Watkins, S. M., & German, J. B. (2009). Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 5(4), 507–516.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Frida Torell
    • 1
    • 2
  • Kate Bennett
    • 3
  • Silvia Cereghini
    • 4
    • 5
    • 6
  • Stefan Rännar
    • 3
  • Katrin Lundstedt-Enkel
    • 3
    • 7
  • Thomas Moritz
    • 3
  • Cecile Haumaitre
    • 4
    • 5
    • 6
  • Johan Trygg
    • 1
    Email author
  • Torbjörn Lundstedt
    • 3
  1. 1.Computational Life Science Cluster (CLiC), Department of ChemistryUmeå UniversityUmeåSweden
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.AcureOmics ABUmeåSweden
  4. 4.CNRS, UMR7622ParisFrance
  5. 5.Sorbonne Universités, UPMC, UMR7622ParisFrance
  6. 6.Inserm U-1156ParisFrance
  7. 7.Department of Organismal BiologyUppsala UniversityUppsalaSweden

Personalised recommendations