Metabolomics

, 12:23 | Cite as

Effects of synthetic large-scale genome reduction on metabolism and metabolic preferences in a nutritionally complex environment

  • Fan Fei
  • George C. diCenzo
  • Dawn M. E. Bowdish
  • Brian E. McCarry
  • Turlough M. Finan
Original Article

Abstract

The soil bacterium Sinorhizobium meliloti forms nodules on the roots of leguminous plants, where N2 is reduced to ammonia. Its genome includes a 3.65 Mb chromosome, a 1.35 Mb pSymA megaplasmid, and a 1.68 Mb pSymB chromid. pSymA and pSymB constitute ~45 % of the genome and here a non-targeted approach was used to identify the metabolic consequences of the removal of these replicons. Polar and non-polar metabolites from wild-type, ∆pSymA, ∆pSymB, and ∆pSymAB cells and supernatants across a growth curve were analyzed by LC–HILIC–TOF–MS. 2008 metabolite features were identified in the extracellular metabolome of cells grown in LBmc containing yeast extract and casein hydrolysate. 1474 features were found from the intracellular metabolites of cells grown in minimal M9-sucrose medium. Analysis revealed both time and genotype influenced the metabolome, with the removal of pSymB having a much greater effect than the loss of pSymA. Strains lacking pSymB showed an increase in sugar, amino acid, and nucleotide metabolites in the intracellular metabolome, and the loss of pSymB clearly impaired the cell’s ability to catabolize exogenous amino acids. We conclude that despite the ability of wild-type, ∆pSymA, ∆pSymB, and ∆pSymAB strains to grow in both M9-sucrose and LBmc media, the removal of pSymA, and particularly pSymB, had clear and dramatic effects on the S. meliloti metabolome. The larger effect associated with the pSymB chromid is consistent with the large number of metabolic genes on this replicon and the greater genetic and metabolic integration of this replicon with the S. meliloti chromosome.

Keywords

Sinorhizobium Metabolism Multipartite Microbial 

Supplementary material

11306_2015_928_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1685 kb)
11306_2015_928_MOESM2_ESM.xlsx (2 mb)
Supplementary material 2 (XLSX 2037 kb)
11306_2015_928_MOESM3_ESM.xlsx (2 mb)
Supplementary material 3 (XLSX 2056 kb)

References

  1. Barsch, A., Patschkowski, T., & Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Functional & Integrative Genomics, 4(4), 219–230. doi:10.1007/s10142-004-0117-y.CrossRefGoogle Scholar
  2. Barsch, A., Tellström, V., Patschkowski, T., Küster, H., & Niehaus, K. (2006). Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Molecular Plant-Microbe Interactions, 19(9), 998–1013. doi:10.1094/MPMI-19-0998.CrossRefPubMedGoogle Scholar
  3. Carson, K. C., Holliday, S., Glenn, A. R., & Dilworth, M. J. (1992). Siderophore and organic acid production in root nodule bacteria. Archives of Microbiology, 157, 264–271.CrossRefPubMedGoogle Scholar
  4. Chang, D.-E., Smalley, D. J., & Conway, T. (2002). Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Molecular Microbiology, 45(2), 289–306.CrossRefPubMedGoogle Scholar
  5. Chen, H., Higgins, J., Oresnik, I. J., Hynes, M. F., Natera, S., Djordjevic, M. A., et al. (2000). Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis, 21, 3833–3842.CrossRefPubMedGoogle Scholar
  6. diCenzo, G. C., & Finan, T. M. (2015). Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Molecular Genetics and Genomics, 290(4), 1345–1356. doi:10.1007/s00438-015-0998-6.CrossRefPubMedGoogle Scholar
  7. diCenzo, G. C., MacLean, A. M., Milunovic, B., Golding, G. B., & Finan, T. M. (2014). Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genetics, 10(10), e1004742. doi:10.1371/journal.pgen.1004742.PubMedCentralCrossRefPubMedGoogle Scholar
  8. diCenzo, G., Milunovic, B., Cheng, J., & Finan, T. M. (2013). The tRNAarg gene and engA are essential genes on the 1.7-mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. Journal of Bacteriology, 195(2), 202–212. doi:10.1128/JB.01758-12.PubMedCentralCrossRefPubMedGoogle Scholar
  9. diCenzo, G. C., Zamani, M., Cowie, A., & Finan, T. M. (2015). Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype. Microbiology,. doi:10.1099/mic.0.000182.PubMedGoogle Scholar
  10. Dominguez-Ferreras, A., Perez-Arnedo, R., Becker, A., Olivares, J., Soto, M. J., & Sanjuan, J. (2006). transcriptome profiling reveals the importance of plasmid pSymB for Osmoadaptation of Sinorhizobium meliloti. Journal of Bacteriology, 188(21), 7617–7625. doi:10.1128/JB.00719-06.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dunn, M. F. (2014). Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Critical Reviews in Microbiology,. doi:10.3109/1040841X.2013.856854.PubMedGoogle Scholar
  12. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi:10.1038/nprot.2011.335.CrossRefPubMedGoogle Scholar
  13. Epstein, B., Branca, A., Mudge, J., Bharti, A. K., Briskine, R., Farmer, A. D., et al. (2012). Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. PLoS Genetics, 8(8), e1002868. doi:10.1371/journal.pgen.1002868.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Fei, F., Bowdish, D. M. E., & McCarry, B. E. (2014). Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS. Analytical and Bioanalytical Chemistry, 406, 3723–3733. doi:10.1007/s00216-014-7797-5.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Finan, T. M., Kunkel, B., De Vos, G. F., & Signer, E. R. (1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. Journal of Bacteriology, 167(1), 66–72.PubMedCentralPubMedGoogle Scholar
  16. Finan, T. M., O’Brian, M. R., Layzell, D. B., Vessey, J. K., & Newton, W. (Eds.). (2002). Nitrogen fixation: Global perspectives. Wallingford: CABI Publishing.Google Scholar
  17. Finan, T. M., Oresnik, I. J., & Bottacin, A. (1988). Mutants of Rhizobium meliloti defective in succinate metabolism. Journal of Bacteriology, 170(8), 3396–3403.PubMedCentralPubMedGoogle Scholar
  18. Finan, T. M., Weidner, S., Wong, K., Buhrmester, J., Chain, P., Vorhölter, F. J., et al. (2001). The complete sequence of the 1683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9889–9894. doi:10.1073/pnas.161294698.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Galardini, M., Brilli, M., Spini, G., Rossi, M., Roncaglia, B., Bani, A., et al. (2015). Evolution of intra-specific regulatory networks in a multipartite bacterial genome. PLoS Computational Biology, 11(9), e1004478. doi:10.1371/journal.pcbi.1004478.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Galardini, M., Pini, F., Bazzicalupo, M., Biondi, E. G., & Mengoni, A. (2013). Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti. Genome Biology and Evolution, 5(3), 542–558. doi:10.1093/gbe/evt027.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Galibert, F., Finan, T. M., Long, S. R., Pühler, A., Abola, A. P., Ampe, F., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293(5530), 668–672. doi:10.1126/science.1060966.CrossRefPubMedGoogle Scholar
  22. Geddes, B. A., & Oresnik, I. J. (2014). Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Canadian Journal of Microbiology, 60(8), 491–507. doi:10.1139/cjm-2014-0306.CrossRefPubMedGoogle Scholar
  23. Gemperline, E., Jayaraman, D., Maeda, J., Ané, J.-M., & Li, L. (2015). Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. Journal of the American Society for Mass Spectrometry, 26(1), 149–158. doi:10.1007/s13361-014-1010-0.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Guo, H., Sun, S., Eardly, B., Finan, T., & Xu, J. (2009). Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti. Genome, 52(10), 862–875. doi:10.1139/G09-060.CrossRefPubMedGoogle Scholar
  25. Harrison, P. W., Lower, R. P. J., Kim, N. K. D., & Young, J. P. W. (2010). Introducing the bacterial “chromid”: not a chromosome, not a plasmid. Trends in Microbiology, 18(4), 141–148. doi:10.1016/j.tim.2009.12.010.CrossRefPubMedGoogle Scholar
  26. Jonas, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609. doi:10.1016/j.chemosphere.2007.08.056.CrossRefGoogle Scholar
  27. Keum, Y. S., Seo, J. S., Li, Q. X., & Kim, J. H. (2008). Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Applied Microbiology and Biotechnology, 80(5), 863–872. doi:10.1007/s00253-008-1581-4.CrossRefPubMedGoogle Scholar
  28. Krawiec, S., & Riley, M. (1990). Organization of the bacterial chromosome. Microbiological Reviews, 54(4), 502–539.PubMedCentralPubMedGoogle Scholar
  29. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integraged strategy for compound spectra extraction and annotation of LC/MS data sets. Analytical Chemistry, 84(1), 283–289. doi:10.1021/ac202450g.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Mauchline, T. H., Fowler, J. E., East, A. K., Sartor, A. L., Zaheer, R., Hosie, A. H. F., et al. (2006). Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17933–17938. doi:10.1073/pnas.0606673103.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Mostafavi, M., Lewis, J. C., Saini, T., Bustamante, J. A., Gao, I. T., Tran, T. T., et al. (2014). Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression. BMC Microbiology, 14(1), 295. doi:10.1186/s12866-014-0295-2.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Ong, L. C., & Lin, Y.-H. (2003). Metabolite profiles and growth characteristics of Rhizobium meliloti cultivated at different specific growth rates. Biotechnology Progress, 19(3), 714–719. doi:10.1021/bp025758w.CrossRefPubMedGoogle Scholar
  33. Oresnik, I. J., Liu, S. L., Yost, C. K., & Hynes, M. F. (2000). Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. Journal of Bacteriology, 182(12), 3582–3586.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Osteras, M., Driscoll, B. T., & Finan, T. M. (1995). Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene. Journal of Bacteriology, 177(6), 1452–1460.PubMedCentralPubMedGoogle Scholar
  35. Rinas, U., Hellmuth, K., Kang, R., Seeger, A., & Schlieker, H. (1995). Entry of Escherichia coli into stationary phase is indicated by endogenous and exogenous accumulation of nucleobases. Applied and Environmental Microbiology, 61(12), 4147–4151.PubMedCentralPubMedGoogle Scholar
  36. Saborido Basconcillo, L., Zaheer, R., Finan, T. M., & McCarry, B. E. (2009). Cyclopropane fatty acyl synthase in Sinorhizobium meliloti. Microbiology, 155(Pt 2), 373–385. doi:10.1099/mic.0.022608-0.CrossRefPubMedGoogle Scholar
  37. Sallet, E., Roux, B., Sauviac, L., Jardinaud, M.-F., Carrère, S., Faraut, T., et al. (2013). Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Research, 20(4), 339–354. doi:10.1093/dnares/dst014.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Sezonov, G., Joseleau-Petit, D., & D’Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746–8749. doi:10.1128/JB.01368-07.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.CrossRefPubMedGoogle Scholar
  40. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787. doi:10.1021/ac051437y.CrossRefPubMedGoogle Scholar
  41. Sukdeo, N., & Charles, T. C. (2003). Application of crossover-PCR-mediated deletion-insertion mutagenesis to analysis of the bdhA-xdhA2-xdhB2 mixed-function operon of Sinorhizobium meliloti. Archives of Microbiology, 179, 301–304. doi:10.1007/s00203-003-0532-9.PubMedGoogle Scholar
  42. Watson, R. J., Chan, Y. K., Wheatcroft, R., Yang, A. F., & Han, S. H. (1988). Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. Journal of Bacteriology, 170(2), 927–934.PubMedCentralPubMedGoogle Scholar
  43. Wong, K., Finan, T., & Golding, B. (2002). Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids. Functional & Integrative Genomics, 2(6), 274–281. doi:10.1007/s10142-002-0068-0.CrossRefGoogle Scholar
  44. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research,. doi:10.1093/nar/gkv380.Google Scholar
  45. Ye, H., Gemperline, E., Venkateshwaran, M., Chen, R., Delaux, P.-M., Howes-Podoll, M., et al. (2013). MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. The Plant Journal, 75(1), 130–145. doi:10.1111/tpj.12191.CrossRefPubMedGoogle Scholar
  46. Zhang, Y.-M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 6(3), 222–233. doi:10.1038/nrmicro1839.CrossRefPubMedGoogle Scholar
  47. Zhao, H., Li, M., Fang, K., Chen, W., & Wang, J. (2012). In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. PLoS One, 7(2), e31287. doi:10.1371/journal.pone.0031287.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fan Fei
    • 1
  • George C. diCenzo
    • 2
  • Dawn M. E. Bowdish
    • 3
  • Brian E. McCarry
    • 1
  • Turlough M. Finan
    • 2
  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada
  2. 2.Department of BiologyMcMaster UniversityHamiltonCanada
  3. 3.Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations