Metabolomics

, Volume 11, Issue 6, pp 1514–1525 | Cite as

Volatile organic compound (VOC) profiling of citrus tristeza virus infection in sweet orange citrus varietals using thermal desorption gas chromatography time of flight mass spectrometry (TD-GC/TOF-MS)

  • William H. K. Cheung
  • Alberto Pasamontes
  • Daniel J. Peirano
  • Weixiang Zhao
  • Elizabeth E. Grafton-Cardwell
  • Therese Kapaun
  • Raymond. K. Yokomi
  • Jason Simmons
  • Mimi Doll
  • Oliver Fiehn
  • Abhaya M. Dandekar
  • Cristina E. Davis
Original Article

Abstract

Citrus tristeza virus (CTV) (genus Closterovirus) is a plant pathogen which infects economically important citrus crops such as sweet oranges, mandarins, limes and grapefruit varietals. Within the last 70 years, an estimated 100 million citrus trees have been destroyed due to CTV infection worldwide. Present measures to contain CTV infection include scouts for visual assessment, and molecular analysis methods such as enzyme linked immunosorbent assay and reverse transcription polymerase chain reaction. Volatile organic compound (VOC) profiling may offer an alternative method of disease detection. In this study, we used a “Twister™” sorbent system for in-field VOC sampling. Chemical analysis was performed with thermal desorption gas chromatography time-of-flight mass spectrometry, and data were subjected to unsupervised and supervised analysis. Samples were collected from healthy trees, those with asymptomatic CTV, and those with CTV that were coinfected with a secondary unrelated bacterial infection of Spiroplasma citri, the causal agent of citrus stubborn disease (Stubborn). A total of 383 VOCs were detected across three classes: healthy control trees, CTV infected, and CTV coinfected with Stubborn. Mathematical models of this data were built to successfully differentiate: (a) healthy trees from CTV infected trees; (b) healthy trees from both CTV and CTV coinfected with Stubborn; and (c) to effectively differentiate between healthy trees and CTV infected trees, without consideration of Stubborn coinfection (the model would work on both singly or coinfected trees). The putative CTV biomarkers observed were terpenoid based (myrcene, carene, ocimene, bulnesene), two alcohols (n-undecanol, surfynol) and two acetones (geranyl acetone and neryl acetate).

Keywords

Volatile organic compounds (VOCs) Citrus tristeza virus (CTV) Mass spectrometry Gas chromatography Biomarker discovery 

Notes

Acknowledgments

This manuscript is based upon work supported by the California Citrus Research Board (CED, OF, AMD), the Industry-University Cooperative Research Program (CED, OF, AMD), the Florida Citrus Production Advisory Council (CED), the National Science Foundation MCB 1139644 (OF) and the National Institute of Food and Agriculture (RKY). Student support was partially provided by the US Department of Veterans Affairs, Post-9/11 G.I. Bill (DJP). The research was supported by UC ANR at Lindcove Research and Extension Center (Exeter, CA). Opinions expressed in this publication are those of the authors and do not necessarily reflect the view of the funding agencies. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Compliance with ethical requirements

All authors confirm that they have adhered to all required ethical standards for this research.

Conflict of interest

Authors William H. K. Cheung, Alberto Pasamontes, Daniel J. Peirano, Weixiang Zhao, Abhaya M. Dandekar, Oliver Fiehn and Cristina E. Davis performed initial work on plant VOC biomarkers of citrus infection that pre-dated this manuscript, and they have a patent pending noting the identity of potential CTV-related VOC biomarkers (#WO2012129341 A2; priority filing date 21MAR2011).

Supplementary material

11306_2015_807_MOESM1_ESM.docx (15 kb)
Supplemental Table S1 DAS-ELISA and RT-PCR confirmation shows the health status of all the citrus varietals involved in the study (DOCX 14 kb)
11306_2015_807_MOESM2_ESM.docx (61 kb)
Supplemental Table S2 A total of 383 VOC features were detected using the TwisterTM sampling methodology across all of the samples (DOCX 61 kb)

References

  1. Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W., Dandekar, A. M., Fiehn, O., et al. (2014). Detection of Huanglongbing disease using differential mobility spectrometry. Analytical Chemistry, 86(5), 2481–2488. doi: 10.1021/ac403469y.CrossRefPubMedGoogle Scholar
  2. Avijit, R., Ananthakrishnan, G., Hartung, J. S., & Brlansky, R. H. (2010). Development and application of a multiplex reverse-transcription polymerase chain reaction assay for screening a global collection of Citrus tristeza virus isolates. Phytopathology, 100(10), 1077–1088.CrossRefGoogle Scholar
  3. Baltussen, E., Cramers, C. A., & Sandra, P. J. F. (2002). Sorptive sample preparation: A review. Analytical and Bioanalytical Chemistry, 373, 3–22.CrossRefPubMedGoogle Scholar
  4. Baltussen, E., Sandra, P., David, F., & Cramers, C. (1999). Stir bar sorptive extraction (SBSE) a novel extraction technique for aqueous samples: Theory and principles. Journal of Microcolumn, 11, 737–747.CrossRefGoogle Scholar
  5. Bar-Joseph, M. (1989). The continuous challenge of citrus tristeza virus control. Annual Review of Phytopathology, 27, 291–316.CrossRefGoogle Scholar
  6. Bergström, G., Rothschild, M., Groth, I., & Crighton, C. (1994). Oviposition by butterflies on young leaves: Investigation of leaf volatiles. Chemoecology, 5, 147–158.CrossRefGoogle Scholar
  7. Bertolini, E., Moreno, A., Capote, N., Olmos, A., de Luis, A., Vidal, E., et al. (2008). Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. European Journal of Plant Pathology, 120(2), 177–188. doi: 10.1007/s10658-007-9206-9.CrossRefGoogle Scholar
  8. Bicchi, C., Cordero, C., Liberto, E., Sgorbini, B., & Rubiolo, P. (2008). Headspace sampling of the volatile fraction of vegetable matrices. Journal of Chromatography A, 1184, 220–233.CrossRefPubMedGoogle Scholar
  9. Brereton, R. G. (2003). Data analysis for the laboratory and chemical plant. Chichester: Wiley.Google Scholar
  10. Cambra, M., Gorris, M. T., Marroquín, C., Román, M. P., Olmos, A., Martínez, M. C., et al. (2000). Incidence and epidemiology of Citrus tristeza virus in the Valencia Community of Spain. Virus Research, 71, 85–95.CrossRefPubMedGoogle Scholar
  11. Crifasi, J. A., Bruder, M. F., Long, C. W., & Janssen, K. (2006). Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. Journal of Analytical Toxicology, 30, 581–592.CrossRefPubMedGoogle Scholar
  12. Dıez, J., Dominguez, C., Guillen, D. A., Veas, R., & Barroso, G. (2004). Optimisation of stir bar sorptive extraction for the analysis of volatile phenols in wines. Journal of Chromatography A, 1025, 263–267.CrossRefPubMedGoogle Scholar
  13. Doyle, J. J. (1991). DNA protocols for plants. In A. W. B. J. G. Hewitt & J. P. W. Young (Eds.), Molecular Techniques in Taxonomy (Vol. 57, pp. 283–293)., NATO ASI Series H, Cell Biology.CrossRefGoogle Scholar
  14. Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant volatiles: Recent advances and future perspectives. Critical Reviews in Plant Sciences, 25(5), 417–440. doi: 10.1080/07352680600899973.CrossRefGoogle Scholar
  15. Fares, S., Gentner, D. R., Park, J. H., Ormeno, E., Karlik, J., & Goldstein, A. H. (2011). Biogenic emissions from Citrus species in California. Atmospheric Environment, 45(27), 4557–4568. doi: 10.1016/j.atmosenv.2011.05.066.CrossRefGoogle Scholar
  16. Fares, S., Park, J. H., Gentner, D. R., Weber, R., Ormeno, E., Karlik, J., & Goldstein, A. H. (2012). Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard. Atmospheric Chemistry and Physics, 12(20), 9865–9880. doi: 10.5194/acp-12-9865-2012.CrossRefGoogle Scholar
  17. Folimonova, S. Y., Robertson, C. J., Shilts, T., Folimonov, A. S., Hilf, M. E., Garnsey, S. M., & Dawson, W. O. (2010). Infection with Strains of Citrus Tristeza Virus does not exclude superinfection by other strains of the virus. Journal of Virology, 84(3), 1314–1325.CrossRefPubMedGoogle Scholar
  18. Garnsey, S. M., & Cambra, M. (1991). In N. Roistacher (Ed.), Graft-Transmissible Diseases of Citrus. Handbook for Detection and Diagnosis. Enzyme-linked immunosorbent assay (ELISA) for citrus pathogens. Rome: FAO.Google Scholar
  19. Garnsey, S. M., Permar, T. A., Cambra, M., & Henderson, C. T. (1993). Direct tissue blot immunoassay (DTBIA) for detection of Citrus tristeza virus (CTV). Proceedings of 12th Conference, International Organization of Citrus Virology. P, 39–50.Google Scholar
  20. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311(5762), 815–819. doi: 10.1126/science.1112614.CrossRefPubMedGoogle Scholar
  21. Gonza´lez-Mas, M. C., Luis Rambla, J. L., Alamar, M. C., Gutie´rrez, A., & Granell, A. (2011). Comparative analysis of the volatile fraction of fruit juice from different Citrus species. PLoS One, 6(7), e22016 22011–22011.CrossRefGoogle Scholar
  22. Harper, S. J., Dawson, T. E., & Pearson, M. N. (2009). Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Archives of Virology, 154(9), 1505–1510. doi: 10.1007/s00705-009-0456-z.CrossRefPubMedGoogle Scholar
  23. Hilf, M. E., Mavrodieva, V. A., & Garnsey, S. M. (2005). Genetic Marker Analysis of a Global Collection of Isolates of Citrus tristeza virus: Characterization and distribution of CTV genotypes and association with symptoms. Phytopathology, 95(8), 909–917. doi: 10.1094/PHYTO-95-0909.CrossRefPubMedGoogle Scholar
  24. Hoskuldsson, A. (1988). PLS regession methods. Journal of Chemometrics, 2, 211–228.CrossRefGoogle Scholar
  25. Karasev, A. V., Boyko, V. P., Gowda, S., Nikolaeva, O. V., Hilf, M. E., Koonin, E. V., et al. (1995). Complete sequence of the citrus tristeza virus RNA genome. Virology, 208(2), 511–520.CrossRefPubMedGoogle Scholar
  26. Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33(1), 23–88. doi: 10.1023/A:1006127516791.CrossRefGoogle Scholar
  27. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Stahl, B. (2006). Diversity and distribution of floral scent. Botanical Review, 72(1), 1–120. doi: 10.1663/0006-8101(2006).CrossRefGoogle Scholar
  28. Ligor, M., & Buszewski, B. (2003). Study of VOC distribution in citrus fruits by chromatographic analysis. Analytical and Bioanalytical Chemistry, 376(5), 668–672. doi: 10.1007/s00216-003-1946-6.CrossRefPubMedGoogle Scholar
  29. Mann, R. S., Ali, J. G., Hermann, S. L., Tiwari, S., Pelz-Stelinski, K. S., Alborn, H. T., & Stelinski, L. L. (2012). Induced release of a plant-defense volatile ‘deceptively’attracts insect vectors to plants infected with a bacterial pathogen. PLoS One, 8(3), e1002610. doi: 10.1371/journal.ppat.1002610 1002611–1002613.Google Scholar
  30. Martinelli, F., Uratsu, S. L., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., et al. (2012). Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One, 7(5), e38039. doi: 10.1371/journal.pone.0038039.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moreno, P., Ambros, S., Albiach-Marti, M. R., Guerri, J., & Pena, L. (2008). Citrus tristeza virus: A pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251–268.CrossRefPubMedGoogle Scholar
  32. Navarro, L., Pina, J. A., Juárez, J., Ballester-Olmos, J. F., Arregui, J. M., Ortega, C., Navarro, A., Duran-Vila, N., Guerri, J., Moreno, P., Cambra, M., Medina, A. & Zaragoza, S. (2002). The Citrus Variety Improvement program in Spain in the period 1975–2001. In N. Duran-Vila, R. G. Milne, & J. V. da Graça (Eds.), Proceedings of the 15th Conference of the International Organization of Citrus Virologists (pp. 306-316). Riverside, CA: IOCV.Google Scholar
  33. Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., et al. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4, 331–340.CrossRefGoogle Scholar
  34. Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science, 311(5762), 808–811. doi: 10.1126/science.1118510.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qualley, A. V., & Dudareva, N. (2009). Metabolomics of plant volatiles in plant system biology. New York: Humana Press.Google Scholar
  36. Rodriguez, A., San Andres, V., Cervera, M., Redondo, A., Alquezar, B., Shimada, T., et al. (2011a). Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiology, 156(2), 793–802. doi: 10.1104/pp.111.176545.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rodriguez, A., San Andres, V., Cervera, M., Redondo, A., Alquezar, B., Shimada, T., et al. (2011b). The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signal Behav, 6(11), 1820–1823. doi: 10.4161/psb.6.11.16980.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rodriguez, A., Shimada, T., Cervera, M., Alquezar, B., Gadea, J., Gomez-Cadenas, A., et al. (2014). Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens. Plant Physiology, 164(1), 321–339. doi: 10.1104/pp.113.224279.CrossRefPubMedGoogle Scholar
  39. Roy, A., & Brlansky, R. H. (2010). Genome analysis of an orange stem pitting citrus tristeza virus isolate reveals a novel recombinant genotype. Virus Research, 151(2), 118–130. doi: 10.1016/j.virusres.2010.03.017.CrossRefPubMedGoogle Scholar
  40. Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambros, S. (2007). A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods, 145(2), 96–105. doi: 10.1016/j.jviromet.2007.05.011.CrossRefPubMedGoogle Scholar
  41. Skogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound BinBase mass spectral database. BMC Bioinformatics, 12, 321. doi: 10.1186/1471-2105-12-321.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Soini, H. A., Bruce, K. E., Wiesler, D., David, F., Sandra, P., & Novotny, M. (2005). Stir bar sorptive extraction: a new quantitative and comprehenisve sampling technique for determination of chemical signal profile from biological media. Journal of Chemical Ecology, 31(2), 377–392.CrossRefPubMedGoogle Scholar
  43. Soini, H. A., Klouckova, I., Wiesler, D., Oberzaucher, E., Grammer, K., Dixon, S. J., et al. (2010). Analysis of volatile organic compounds in human Saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. Journal of Chemical Ecology, 36(9), 1035–1042.CrossRefPubMedGoogle Scholar
  44. Suzuki, Y., Sakai, H., Shimada, T., Omura, M., Kumazawa, S., & Nakayama, T. (2004). Characterization of gamma-terpinene synthase from Citrus unshiu (Satsuma mandarin). BioFactors, 21(1–4), 79–82.CrossRefPubMedGoogle Scholar
  45. Tienpont, B., David, F., Desmet, K., & Sandra, P. (2002). Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biologicalfluids. Analytical and Bioanalytical Chemistry, 373, 46–55.CrossRefPubMedGoogle Scholar
  46. Tienpont, B., David, F., Desmet, K., & Sandra, P. (2003). Stir bar sorptive extraction thermal desorption capilary GC-MS for profiling and target component analysis of pharmaceutical drugs in urine. Journal of Pharmaceutical and Biomedical Analysis, 32(4–5), 569–579.CrossRefPubMedGoogle Scholar
  47. Vidal, E., Yokomi, R. K., Moreno, A., Bertolini, E., & Cambra, M. (2012). Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: A model for other plant pathogens. Phytopathology, 102(1), 114–121. doi: 10.1094/PHYTO-05-11-0139.CrossRefPubMedGoogle Scholar
  48. Yokomi, R. K. G., & Garnsey, S. M. (1987). Transmision of citrus tristeza virus by A. gossypii & A. citricola in Florida. Phytophylactica, 19, 169–172.Google Scholar
  49. Yokomi, R. K., Lastra, R., Stoetzel, M. B., Damsteegt, V. D., Lee, R. F., Garnsey, S. M., et al. (1994). Establishment of the brown citrus aphid (Homoptera, Aphididae) in Central-America and the Caribbean Basin and transmission of citrus tristeza virus. Journal of Economic Entomology, 87, 1078–1085.CrossRefGoogle Scholar
  50. Yokomi, R. K., Mello, A. F. S., Saponari, M., & Fletcher, J. (2008). Polymerase chain reaction-based detection of Spiroplasma citri associated with citrus stubborn disease. Plant Disease, 92, 253–260.CrossRefGoogle Scholar
  51. Yokomi, R. K., Sisterson, M. (2011). Validation and comparison of a hierarchal sampling plan for estimating incidence of Citrus Stubborn disease. Proceedings 18th Conference. IOCV.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • William H. K. Cheung
    • 1
  • Alberto Pasamontes
    • 1
  • Daniel J. Peirano
    • 1
  • Weixiang Zhao
    • 1
  • Elizabeth E. Grafton-Cardwell
    • 2
  • Therese Kapaun
    • 2
  • Raymond. K. Yokomi
    • 3
  • Jason Simmons
    • 1
  • Mimi Doll
    • 4
  • Oliver Fiehn
    • 4
  • Abhaya M. Dandekar
    • 5
  • Cristina E. Davis
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California, DavisDavisUSA
  2. 2.University of California, Lindcove Research and Extension Center (LREC)ExeterUSA
  3. 3.United States Department of Agriculture, Agricultural Research ServiceSan Joaquin Valley Agricultural Sciences CenterParlierUSA
  4. 4.University of California, Davis, Genome CenterDavisUSA
  5. 5.Department of Plant SciencesUniversity of California, DavisDavisUSA

Personalised recommendations