, Volume 11, Issue 5, pp 1316–1326 | Cite as

Distinct urinary metabolic profiles associated with serum TSH and FT4 concentrations

  • Maik PietznerEmail author
  • Kathrin Budde
  • Georg Homuth
  • Uwe Völker
  • Henry Völzke
  • Matthias Nauck
  • Henri Wallaschofski
  • Nele Friedrich
Original Article


Thyroid hormones (THs) affect virtually all tissues and are essential for maintaining energy metabolism, cellular growth and development. Their release depends on a complex feedback regulation including thyrotropin (TSH), offering a unique individual set point compared with a broad interindividual variance. Keeping in mind that crucial role for intermediary metabolism, the aims of the present study were two-pronged. Firstly to screen the urine metabolome for associations with serum TSH and free thyroxine (FT4) concentrations and secondly, in an attempt to join their metabolic associations and taking into account a tight individual set point, to analyze the relations with the ratio log(TSH)/FT4. Therefore, the urine metabolome of 3327 participants of the population-based Study of Health in Pomerania was characterized by 1H-NMR spectroscopy. Multivariate linear and multinomial logistic regression models were used to detect associations between metabolites and THs. We observed different association patterns for serum TSH or FT4 concentrations. Urine metabolites associated with FT4 included various amino acids as well as citrate, formate and ethanolamine, whereas members of tyrosine metabolism were associated with TSH. Despite not significant, overlap existed towards glycine and ethanolamine. The log(TSH)/FT4 ratio mirrored many of the detected associations and further revealed new associated metabolites/ratios including glycine and succinate. Our findings confirmed metabolic consequences of TH actions, thereby emphasizing the need for distinct interpretation of associations related to serum TSH (hypothalamic-pituitary feedback) or FT4 (tissue specific action) concentrations. In particular, the log(TSH)/FT4 ratio joined their metabolic impact, probably offering a new prospect for thyroid function characterization.


Thyrotropin Free thyroxine Urine metabolome NMR spectroscopy 



The contribution to data collection made by field workers, technicians, interviewers and computer assistants is gratefully acknowledged. This work is part of the research projects Greifswald Approach to Individualized Medicine (GANI_MED) and the Community Medicine Research net (CMR) of the University of Greifswald, Germany, which are funded by the Federal Ministry of Education and Research (GANI_MED: Grant 03IS2061A), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Both encompass several research projects which share data from the population-based Study of Health in Pomerania (SHIP; Analyses were further supported by grants from the German Research Foundation as part of the priority program “Thyroid Trans Act” (DFG WA 1328/5-1) as well as VO 955/10-2.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2015_788_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1113 kb)


  1. Andersen, S., Pedersen, K. M., Bruun, N. H., & Laurberg, P. (2002). Narrow individual variations in serum T(4) and T(3) in normal subjects: A clue to the understanding of subclinical thyroid disease. The Journal of Clinical Endocrinology and Metabolism, 87(3), 1068–1072. doi: 10.1210/jcem.87.3.8165.CrossRefPubMedGoogle Scholar
  2. Benhadi, N., Fliers, E., Visser, T. J., Reitsma, J. B., & Wiersinga, W. M. (2010). Pilot study on the assessment of the setpoint of the hypothalamus–pituitary–thyroid axis in healthy volunteers. European Journal of Endocrinology, 162(2), 323–329. doi: 10.1530/eje-09-0655.CrossRefPubMedGoogle Scholar
  3. Bictash, M., Ebbels, T. M., Chan, Q., Loo, R. L., Yap, I. K. S., Brown, I. J., et al. (2010). Opening up the “Black Box”: Metabolic phenotyping and metabolome-wide association studies in epidemiology. Journal of Clinical Epidemiology, 63(9), 970–979. doi: 10.1016/j.jclinepi.2009.10.001.
  4. Biondi, B., & Cooper, D. S. (2008). The clinical significance of subclinical thyroid dysfunction. Endocrine Reviews, 29(1), 76–131. doi: 10.1210/er.2006-0043.CrossRefPubMedGoogle Scholar
  5. Brix, K., Führer, D., & Biebermann, H. (2011). Molecules important for thyroid hormone synthesis and action—known facts and future perspectives. Thyroid Research, 4(Suppl 1), 9. doi: 10.1186/1756-6614-4-S1-S9.CrossRefGoogle Scholar
  6. Gharbi-Chihi, J., Facchinetti, T., Berge-Lefranc, J. L., Bonne, J., & Torresani, J. (1991). Triiodothyronine control of ATP-citrate lyase and malic enzyme during differentiation of a murine preadipocyte cell line. Hormone and Metabolic Research, 23(9), 423–427. doi: 10.1055/s-2007-1003717.CrossRefPubMedGoogle Scholar
  7. Gurnell, M., Halsall, D. J., & Chatterjee, V. K. (2011). What should be done when thyroid function tests do not make sense? Clinical Endocrinology (Oxf), 74(6), 673–678. doi: 10.1111/j.1365-2265.2011.04023.x.CrossRefGoogle Scholar
  8. Harding, P. P., & Duester, G. (1992). Retinoic acid activation and thyroid hormone repression of the human alcohol dehydrogenase gene ADH3. Journal of Biological Chemistry, 267(20), 14145–14150.PubMedGoogle Scholar
  9. Hoermann, R., & Midgley, J. E. (2012). TSH measurement and its implications for personalised clinical decision-making. J Thyroid Research, 2012, 438037. doi: 10.1155/2012/438037.CrossRefGoogle Scholar
  10. Jourdan, C., Linseisen, J., Meisinger, C., Petersen, A.-K., Gieger, C., Rawal, R., et al. (2014). Associations between thyroid hormones and serum metabolite profiles in an euthyroid population. Metabolomics, 10(1), 152–164. doi: 10.1007/s11306-013-0563-4.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Kavok, N. S., Krasilnikova, O. A., & Babenko, N. A. (2001). Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone. BMC Cell Biology, 2, 5.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Koulouri, O., Moran, C., Halsall, D., Chatterjee, K., & Gurnell, M. (2013). Pitfalls in the measurement and interpretation of thyroid function tests. Best Practice Research Clinical Endocrinology Metabolism, 27(6), 745–762. doi: 10.1016/j.beem.2013.10.003.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Levey, A. S., Bosch, J. P., Lewis, J. B., Greene, T., Rogers, N., & Roth, D. (1999). A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Annals of Internal Medicine, 130(6), 461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
  14. Lindon, J. C., Nicholson, J. K., Holmes, E., & Everett, J. R. (2000). Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance, 12(5), 289–320. doi: 10.1002/1099-0534(2000)12:5<289:AID-CMR3>3.0.CO;2-W.CrossRefGoogle Scholar
  15. Mariani, L. H., & Berns, J. S. (2012). The renal manifestations of thyroid disease. Journal of the American Society of Nephrology, 23(1), 22–26. doi: 10.1681/asn.2010070766.CrossRefPubMedGoogle Scholar
  16. Meier, C. A., Maisey, M. N., Lowry, A., Muller, J., & Smith, M. A. (1993). Interindividual differences in the pituitary-thyroid axis influence the interpretation of thyroid function tests. Clinical Endocrinology (Oxf), 39(1), 101–107.CrossRefGoogle Scholar
  17. Montoya, G. A., Strauss, V., Fabian, E., Kamp, H., Mellert, W., Walk, T., et al. (2013). Mechanistic analysis of metabolomics patterns in rat plasma during administration of direct thyroid hormone synthesis inhibitors or compounds increasing thyroid hormone clearance. Toxicology Letters,. doi: 10.1016/j.toxlet.2013.12.010.PubMedCentralGoogle Scholar
  18. Muller, M. J., & Seitz, H. J. (1984a). Thyroid hormone action on intermediary metabolism. Part I: Respiration, thermogenesis and carbohydrate metabolism. Klin Wochenschr, 62(1), 11–18.CrossRefPubMedGoogle Scholar
  19. Muller, M. J., & Seitz, H. J. (1984b). Thyroid hormone action on intermediary metabolism. Part III. Protein metabolism in hyper- and hypothyroidism. Klinische Wochenschrift, 62(3), 97–102.CrossRefPubMedGoogle Scholar
  20. Piehl, S., Hoefig, C., Scanlan, T., & Köhrle, J. (2011). Thyronamines—past, present, and future. Endocrine Reviews, 32(1), 64–80.CrossRefPubMedGoogle Scholar
  21. Sandler, M. P., Robinson, R. P., Rabin, D., Lacy, W. W., & Abumrad, N. N. (1983). The effect of thyroid hormones on gluconeogenesis and forearm metabolism in man. Journal of Clincal Endocrinology Metabolism, 56(3), 479–485. doi: 10.1210/jcem-56-3-479.CrossRefGoogle Scholar
  22. Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., et al. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79(18), 6995–7004. doi: 10.1021/ac0708588.CrossRefPubMedGoogle Scholar
  23. Spence, J. T., Pitot, H. C., & Zalitis, G. (1979). Regulation of ATP-citrate lyase in primary cultures of adult rat hepatocytes. The Journal of biological chemistry, 254(23), 12169–12173.PubMedGoogle Scholar
  24. Stockigt, J. R., Lim, C. F., Barlow, J. W., Wynne, K. N., Mohr, V. S., Topliss, D. J., et al. (1985). Interaction of furosemide with serum thyroxine-binding sites: in vivo and in vitro studies and comparison with other inhibitors. Journal of Clincal Endocrinology Metabolism, 60(5), 1025–1031. doi: 10.1210/jcem-60-5-1025.CrossRefGoogle Scholar
  25. Sun, M. T., Hsiao, F. C., Su, S. C., Pei, D., & Hung, Y. J. (2012). Thyrotropin as an independent factor of renal function and chronic kidney disease in normoglycemic euthyroid adults. Endocrine Research, 37(3), 110–116. doi: 10.3109/07435800.2011.640374.CrossRefPubMedGoogle Scholar
  26. Thienpont, L. M., Van Uytfanghe, K., Beastall, G., Faix, J. D., Ieiri, T., Miller, W. G., et al. (2010a). Report of the IFCC working Group for Standardization of Thyroid Function Tests; part 1: Thyroid-stimulating hormone. Clinical Chemistry, 56(6), 902–911.CrossRefPubMedGoogle Scholar
  27. Thienpont, L. M., Van Uytfanghe, K., Beastall, G., Faix, J. D., Ieiri, T., Miller, W. G., et al. (2010b). Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: Free thyroxine and free triiodothyronine. Clinical Chemistry, 56(6), 912–920.CrossRefPubMedGoogle Scholar
  28. van de Poll, M. C., Soeters, P. B., Deutz, N. E., Fearon, K. C., & Dejong, C. H. (2004). Renal metabolism of amino acids: Its role in interorgan amino acid exchange. The American Journal of Clinical Nutrition, 79(2), 185–197.PubMedGoogle Scholar
  29. Völzke, H., Alte, D., Kohlmann, T., Lüdemann, J., Nauck, M., John, U., et al. (2005). Reference intervals of serum thyroid function tests in a previously iodine-deficient area. Thyroid, 15(3), 279–285.CrossRefPubMedGoogle Scholar
  30. Völzke, H., Alte, D., Schmidt, C. O., Radke, D., Lorbeer, R., Friedrich, N., et al. (2011). Cohort profile: The study of health in Pomerania. The International Journal of Epidemiology, 40(2), 294–307. doi: 10.1093/ije/dyp394.CrossRefPubMedGoogle Scholar
  31. Wahren, J., Wennlund, A., Nilsson, L. H., & Felig, P. (1981). Influence of hyperthyroidism on splanchnic exchange of glucose and gluconeogenic precursors. Journal of Clinical Investigation, 67(4), 1056–1063.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Wu, S., Gao, Y., Dong, X., Tan, G., Li, W., Lou, Z., et al. (2013a). Serum metabonomics coupled with Ingenuity Pathway Analysis characterizes metabolic perturbations in response to hypothyroidism induced by propylthiouracil in rats. Journal of Pharmaceutical and Biomedical Analysis, 72, 109–114. doi: 10.1016/j.jpba.2012.09.030.CrossRefPubMedGoogle Scholar
  33. Wu, S., Tan, G., Dong, X., Zhu, Z., Li, W., Lou, Z., et al. (2013b). Metabolic profiling provides a system understanding of hypothyroidism in rats and its application. PLoS ONE, 8(2), e55599.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Yen, P. M. (2001). Physiological and molecular basis of thyroid hormone action. Physiological Reviews, 81(3), 1097–1142.PubMedGoogle Scholar
  35. Zelinskaia, N. B. (1989). The significance of studying phospholipids in the diagnosis of hypothyroidism. Vrach Delo(5), 79–81.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maik Pietzner
    • 1
    Email author
  • Kathrin Budde
    • 1
  • Georg Homuth
    • 2
  • Uwe Völker
    • 2
  • Henry Völzke
    • 3
  • Matthias Nauck
    • 1
  • Henri Wallaschofski
    • 1
  • Nele Friedrich
    • 1
  1. 1.Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine and University of GreifswaldGreifswaldGermany
  3. 3.Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations