Advertisement

Metabolomics

, Volume 11, Issue 1, pp 175–183 | Cite as

Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia

  • Takeshi FuruhashiEmail author
  • Takumi Ogawa
  • Rai Nakai
  • Masami Nakazawa
  • Atsushi Okazawa
  • Adchara Padermschoke
  • Kazuki Nishio
  • Masami Yokota Hirai
  • Masanori Arita
  • Daisaku Ohta
Short Communication

Abstract

Lipids are being increasingly used as biodiesel feedstock, and several saturated wax esters from Euglena gracilis are candidates for outdoor bulk production. Wax ester fermentation in Euglena is strongly increased by hypoxia, but key events underlying the metabolic shift toward wax ester biosynthesis are poorly understood. Profiling of wax esters and other lipophilic compounds is the first step for research toward the clarification of wax ester fermentation molecular mechanisms, and thus, a simple and comprehensive platform for their profiling is required. In this study, we established a profiling method for wax esters and lipophilic compounds in Euglena using gas chromatography-mass spectrometry (GC–MS). Using this method, we compared accumulation profiles of wax esters and lipophilic compounds between a wild-type Euglena Z strain and a bleached SM-ZK strain. Both the wild-type and the bleached strains contained C14:0 fatty acid-C14:0 fatty alcohol as a dominant wax ester. Wax ester fermentation initiated 4 h after the cessation of oxygen supply by halting the culture agitation resulting in linear increase and proportional changes of wax ester amounts during 24 h. However, complete anoxia by nitrogen gas aeration inhibited wax ester production and the addition of bicarbonates reversed the inhibition, suggesting that there is a need for an additional carbon source for wax ester fermentation under anoxia. Our simple method enables the investigation of metabolic responses leading to wax ester fermentation in Euglena.

Keywords

Euglena Wax ester Hypoxia 

Notes

Acknowledgments

We thank Dr. Tsugawa (RIKEN) for assisting with the statistical analysis.

Supplementary material

11306_2014_687_MOESM1_ESM.psd (1.9 mb)
Supplementary material 1 (PSD 1,994 kb)
11306_2014_687_MOESM2_ESM.docx (32 kb)
Supplementary material 1 (DOC 32 kb)
11306_2014_687_MOESM3_ESM.docx (55 kb)
Supplementary material 1 (DOC 56 kb)
11306_2014_687_MOESM4_ESM.docx (55 kb)
Supplementary material 1 (DOC 55 kb)

References

  1. Atteia, A., van Lis, R., Tielens, A. G. M., & Martin, W. F. (2013). Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica et Biophysica Acta Bioenergetics, 1827, 210–223.CrossRefGoogle Scholar
  2. Butovich, I. A., Borowiak, A. M., & Eule, J. C. (2011). Comparative HPLC-MSn analysis of canine and human meibomian lipidomes: Many similarities, a few differences. Scientific Reports, 1, 1–12.CrossRefGoogle Scholar
  3. Fitzgerald, M., & Murphy, R. C. (2007). Electrospray mass spectrometry of human hair wax esters. Journal of Lipid Research, 48, 1231–1246.PubMedCrossRefGoogle Scholar
  4. Furuhashi, T., & Weckwerth, W. (2013). Introduction to lipid (FAME) analysis in algae using gas chromatography-mass spectrometry. In W. Weckwerth & G. Kahl (Eds.), The handbook of plant metabolomics (pp. 215–225). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  5. Inui, H., Miyatake, K., Nakano, Y., & Kitaoka, S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Letters, 150, 89–93.CrossRefGoogle Scholar
  6. Iven, T., Herrfurth, C., Hornung, E., Heilmann, M., Hofvander, P., Stymne, S., et al. (2013). Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods, 9, 1–14.CrossRefGoogle Scholar
  7. Koren, L. E., & Hutner, S. H. (1967). High-yield media for photosynthesizing Euglena gracilis z. Journal of Protozoology, 14(Supplement), 17.Google Scholar
  8. Krnáčová, K., Vesteg, M., Hampl, V., Vlček, Č., & Horváth, A. (2012). Euglena gracilis and trypanosomatids possess common patterns in predicted mitochondrial targeting presequences. Journal of Molecular Evolution, 75, 119–129.PubMedCrossRefGoogle Scholar
  9. Lee, S. H., Stephens, J. L., Paul, K. S., & Englund, P. T. (2006). Fatty acid synthesis by elongases in trypanosomes. Cell, 126, 691–699.PubMedCrossRefGoogle Scholar
  10. Livore, V. I., Tripodi, K. E. J., & Uttaro, A. D. (2007). Elongation of polyunsaturated fatty acids in trypanosomatids. FEBS Journal, 274, 264–274.PubMedCrossRefGoogle Scholar
  11. McCalla, D. R. (1963). Accumualtion of extracellular amino acids by Euglena gracilis. Journal of Protozoology, 10, 491–495.PubMedCrossRefGoogle Scholar
  12. Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., et al. (2012). Biochemistry and evolution of anaerobic energy metabolism in Eukaryotes. Microbiology and Molecular Biology Review, 76, 444–495.CrossRefGoogle Scholar
  13. Oda, Y., Nakano, Y., & Kitaoka, S. (1982). Utilization and toxicity of exogenous amino acids in Euglena gracilis. Journal of General Microbiology, 128, 853–858.Google Scholar
  14. Samuels, L. Ljerka, Kunst, L., & Jetter, R. (2008). Sealing plant surfaces: Cuticular wax formation by epidermal Cells. Annual Review Plant Biology, 59, 683–707.CrossRefGoogle Scholar
  15. Teerawanichpan, P., & Qiu, X. (2010). Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids, 45, 263–273.PubMedCrossRefGoogle Scholar
  16. Tucci, S., Vacula, R., Krajcovic, J., Proksch, P., & Martin, W. (2010). Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. Journal of Eukaryotic Microbiology, 57, 63–69.PubMedCrossRefGoogle Scholar
  17. Tulloch, A. P. (1971). Beeswax: Structure of the esters and their component hydroxy acid and diols. Chemistry and Physics of Lipids, 6, 235–265.CrossRefGoogle Scholar
  18. Urbanová, K., Vrkoslav, V., Valterová, I., Háková, M., & Cvacka, J. (2012). Structural characterization of wax esters by electron ionization mass spectrometry. Journal of Lipid Research, 53, 204–213.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Zimorski, V., Major, P., Yu, R. Y., Hoffmann, K., Brás, X. P., Tucci, S., et al. (2012). Evolutionary significance of anaerobic energy metabolism in eukaryotes. Journal of Endocytobiosis and Cell Research, 23, 64–68.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Takeshi Furuhashi
    • 1
    Email author
  • Takumi Ogawa
    • 2
  • Rai Nakai
    • 2
  • Masami Nakazawa
    • 2
    • 3
  • Atsushi Okazawa
    • 2
  • Adchara Padermschoke
    • 2
  • Kazuki Nishio
    • 2
  • Masami Yokota Hirai
    • 1
  • Masanori Arita
    • 1
    • 4
  • Daisaku Ohta
    • 2
  1. 1.RIKEN Center for Sustainable Resource ScienceYokohamaJapan
  2. 2.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan
  3. 3.Japan Science and Technology Agency (JST)Precursory Research for Embryonic Science and Technology (PRESTO)MeguroJapan
  4. 4.National Institute of GeneticsMishimaJapan

Personalised recommendations