Metabolomics

, Volume 11, Issue 1, pp 50–63 | Cite as

Analyzing metabolomics-based challenge tests

  • Daniel J. Vis
  • Johan A. Westerhuis
  • Doris M. Jacobs
  • John P. M. van Duynhoven
  • Suzan Wopereis
  • Ben van Ommen
  • Margriet M. W. B. Hendriks
  • Age K. Smilde
Review Article

Abstract

Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the biological response of the individual to these challenges. The information content of such metabolomics challenge test data involves both the disturbance and restoration of homeostasis on a metabolic level and is thus inherently different from the analysis of steady state data. It opens doors to study the variation of resilience between individuals beyond the classical biomarkers; preferably in terms of underlying biological processes. We review challenge tests in which metabolomics was used to analyze the biological response. Specifically, we describe strategies to perform statistical analyses on the responses and we will show some examples of these strategies applied to a postprandial challenge that was used to study a diet with anti-inflammatory properties. Finally we discuss open issues and give recommendation for further research.

Keywords

Challenge tests Perturbation Statistical analysis Review Redefining health 

Supplementary material

11306_2014_673_MOESM1_ESM.pdf (240 kb)
Supplementary material 1 (pdf 239 KB)

References

  1. (2009). What is health? The ability to adapt. Lancet, 373(9666):781Google Scholar
  2. (2011). Standards of medical care in diabetes—2011. Diabetes Care, 34(Suppl 1), S11–S61.Google Scholar
  3. Anderson, T. (2003). An introduction to multivariate statistical analysis. New York: Wiley.Google Scholar
  4. Arbes, J. S. J., Gergen, P. J., Elliott, L., & Zeldin, D. C. (2005). Prevalences of positive skin test responses to 10 common allergens in the US population: Results from the third National Health and Nutrition Examination Survey. Journal of Allergy and Clinical Immunology, 116(2), 377–383.PubMedCrossRefGoogle Scholar
  5. Bakker, G. C., van Erk, M. J., Pellis, L., Wopereis, S., Rubingh, C. M., Cnubben, N. H., et al. (2010). An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: A nutrigenomics approach. American Journal of Clinical Nutrition, 91(4), 1044–1059.PubMedCrossRefGoogle Scholar
  6. Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.CrossRefGoogle Scholar
  7. Bennett, S. M. A., Agrawal, A., Elasha, H., Heise, M., Jones, N. P., Walker, M., et al. (2004). Rosiglitazone improves insulin sensitivity, glucose tolerance and ambulatory blood pressure in subjects with impaired glucose tolerance. Diabetic Medicine, 21(5), 415–422.PubMedCrossRefGoogle Scholar
  8. Bergman, R. N., Ider, Y. Z., Bowden, C. R., & Cobelli, C. (1979). Quantitative estimation of insulin sensitivity. American Journal of Physiology, 236(6), E667–E677.PubMedGoogle Scholar
  9. Bondia-Pons, I., Nordlund, E., Mattila, I., Katina, K., Aura, A. M., Kolehmainen, M., et al. (2011). Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutrition Journal, 10, 116.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Boutayeb, A., & Chetouani, A. (2006). A critical review of mathematical models and data used in diabetology. Biomedical Engineering Online, 5(1), 43.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bouwman, J., Vogels, J. T. W. E., Wopereis, S., Rubingh, C. M., Bijlsma, S., & van Ommen, B. (2012). Visualization and identification of health space, based on personalized molecular phenotype and treatment response to relevant underlying biological processes. BMC Medical Genomics, 5, 1.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bro, R. (1998). Multi-way analysis in the food industry. PhD thesis, University of Amsterdam, Amsterdam.Google Scholar
  13. Canguilhem, G. (1991). The normal and the pathological. London: MIT Press.Google Scholar
  14. Casella, G. (2008). Statistical design. New York: Springer.CrossRefGoogle Scholar
  15. Cavalieri, D., & De Filippo, C. (2005). Bioinformatic methods for integrating whole-genome expression results into cellular networks. Drug Discovery Today, 10(10), 727–734.PubMedCrossRefGoogle Scholar
  16. Curtis, R. K., Oresic, M., & Vidal-Puig, A. (2005). Pathways to the analysis of microarray data. Trends in Biotechnology, 23(8), 429–435.PubMedCrossRefGoogle Scholar
  17. Davidian, M., & Giltinan, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics, 8(4), 387–419.CrossRefGoogle Scholar
  18. de Graaf, A. A., Freidig, A. P., De Roos, B., Jamshidi, N., Heinemann, M., Rullmann, J. A., et al. (2009). Nutritional systems biology modeling: From molecular mechanisms to physiology. PLOS Computational Biology, 5(11), e1000554.PubMedCentralPubMedCrossRefGoogle Scholar
  19. de la Fuente, A., Bing, N., Hoeschele, I., & Mendes, P. (2004). Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20(18), 3565–3574.PubMedCrossRefGoogle Scholar
  20. Dillon, W. R. G. M. (1984). Multivariate analysis. New York: Wiley.Google Scholar
  21. Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., et al. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America, 104(6), 1777–1782.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Elliott, R., Pico, C., Dommels, Y., Wybranska, I., Hesketh, J., & Keijer, J. (2007). Nutrigenomic approaches for benefit-risk analysis of foods and food components: Defining markers of health. British Journal of Nutrition, 98, 1095–1100.PubMedCrossRefGoogle Scholar
  23. Gille, C., Bolling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hubner, K., et al. (2010). HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology, 6, 411.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heikkila, H. J. (1999). New models for pharmacokinetic data based on a generalized Weibull distribution. Journal of Biopharmaceutical Statistics, 9(1), 89–107.PubMedCrossRefGoogle Scholar
  25. Ho, J., Larson, M., Vasan, R., Ghorbani, A., Cheng, S., Rhee, E., et al. (2013). Metabolite profiles during oral glucose challenge. Diabetes, 62(8), 2689–2698.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hodgson, A., Randell, R., Boon, N., Garczarek, U., Mela, D., Jeukendrup, A., et al. (2013). Metabolic response to green tea extract during rest and moderate-intensity exercise. Journal of Nutritional Biochemistry, 24, 325–334.PubMedCrossRefGoogle Scholar
  27. Hoefsloot, H. C. J., Smit, S., & Smilde, A. K. (2008). A classification model for the Leiden proteomics competition. Statistical Applications in Genetics and Molecular Biology, 7(2):Article8.Google Scholar
  28. Huber, M., Knottnerus, J. A., Green, L., van der Horst, H., Jadad, A. R., Kromhout, D., et al. (2011). How should we define health? British Medical Journal, 343, d4163.PubMedCrossRefGoogle Scholar
  29. Huisinga, W., Solms, A., Fronton, L., & Pilari, S. (2012). Modeling interindividual variability in physiologically based pharmacokinetics and its link to mechanistic covariate modeling. CPT: Pharmacometrics & Systems Pharmacology, 1, e4.Google Scholar
  30. Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., Westerhuis, J. A., & Smilde, A. K. (2005). ASCA: Analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 19, 469–481.CrossRefGoogle Scholar
  31. Jawetz, E., & Meyer, K. F. (1943). Avirulent strains of Pasteurella pestis. The Journal of Infectious Diseases, 73(2), 124–143.CrossRefGoogle Scholar
  32. Jolliffe, I. T. (1986). Principal component analysis. Berlin: Springer.CrossRefGoogle Scholar
  33. Krug, S., Kastenmüller, G., Stückler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26(6), 2607–2619.PubMedCrossRefGoogle Scholar
  34. Lee, D. K. C., Haggart, K., & Lipworth, B. J. (2004). Reproducibility of response to nasal lysine-aspirin challenge in patients with aspirin-induced asthma. The Annals of Allergy, Asthma & Immunology, 93(2), 185–188.CrossRefGoogle Scholar
  35. Lehtonen, H. M., Lindstedt, A., Jarvinen, R., Sinkkonen, J., Graca, G., Viitanen, M., et al. (2013). H-1 NMR-based metabolic fingerprinting of urine metabolites after consumption of lingonberries (Vaccinium vitis-idaea) with a high-fat meal. Food Chemistry, 138, 982–990.PubMedCrossRefGoogle Scholar
  36. Lin, S. H., Yang, Z., Liu, H. D., Tang, L. H., & Cai, Z. W. (2011). Beyond glucose: Metabolic shifts in responses to the effects of the oral glucose tolerance test and the high-fructose diet in rats. Molecular Biosystems, 7, 1537–1548.PubMedCrossRefGoogle Scholar
  37. Lindstrom, M. L., & Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3), 673–687.PubMedCrossRefGoogle Scholar
  38. Liu, X. D., Xie, L., Han, K. Q., & Liu, G. Q. (1996). Weibull function fits to pharmacokinetic data of ribavirin in man. The European Journal of Drug Metabolism and Pharmacokinetics, 21(3), 227–231.CrossRefGoogle Scholar
  39. Makroglou, A., Li, J., & Kuang, Y. (2006). Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: An overview. Applied Numerical Mathematics, 56(3–4), 559–573.CrossRefGoogle Scholar
  40. Matysik, S., Martin, J., Bala, M., Scherer, M., Schaffler, A., & Schmitz, G. (2011). Bile acid signaling after an oral glucose tolerance test. Chemistry and Physics of Lipids, 164, 525–529.PubMedCrossRefGoogle Scholar
  41. Miyazaki, Y., He, H., Mandarino, L. J., & DeFronzo, R. A. (2003). Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes, 52(8), 1943–1950.PubMedCrossRefGoogle Scholar
  42. Nam, D., & Kim, S.-Y. (2008). Gene-set approach for expression pattern analysis. Briefings in Bioinformatics, 9(3), 189–197.PubMedCrossRefGoogle Scholar
  43. Nieman, D. C., Gillitt, N. D., Henson, D. A., Sha, W., Shanely, R. A., Knab, A. M., et al. (2012). Bananas as an energy source during exercise: A metabolomics approach. Plos One, 7, e37479.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Peeters, K. A. B. M., Lamers, R.-J. A. N., Penninks, A. H., Knol, E. F., Bruijnzeel-Koomen, C. A. F. M., van Nesselrooij, J. H. J., et al. (2011). A search for biomarkers as diagnostic tools for food allergy: A pilot study in peanut-allergic patients. International Archives of Allergy and Immunology, 155(1), 23–30.PubMedCrossRefGoogle Scholar
  45. Pellis, L., van Erk, M. J., van Ommen, B., Bakker, G. C. M., Hendriks, H. F. J., Cnubben, N. H. P., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics, 8(2), 347–359.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Piotrovskii, V. K. (1987). Pharmacokinetic stochastic model with Weibull-distributed residence times of drug molecules in the body. The European Journal of Clinical Pharmacology, 32(5), 515–523.CrossRefGoogle Scholar
  47. Rhee, E. P., Cheng, S., Larson, M. G., Walford, G. A., Lewis, G. D., McCabe, E., et al. (2011). Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Journal of Clinical Investigation, 121, 1402–1411.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Rodriguez, L., Roberts, L. D., Larosa, J., Heinz, N., Gerszten, R., Nurko, S., et al. (2013). Relationship between postprandial metabolomics and colon motility in children with constipation. Neurogastroenterology and Motility, 25, 420–426.PubMedCrossRefGoogle Scholar
  49. Roy, A., & Parker, R. S. (2007). Dynamic modeling of exercise effects on plasma glucose and insulin levels. The Journal of Diabetes Science and Technology, 1(3), 338–347.CrossRefGoogle Scholar
  50. Rubingh, C. M., van Erk, M. J., Wopereis, S., van Vliet, T., Verheij, E. R., Cnubben, N. H. P., et al. (2011). Discovery of subtle effects in a human intervention trial through multilevel modeling. Chemometrics and Intelligent Laboratory Systems, 106(1), 108–114.CrossRefGoogle Scholar
  51. Rubio-Aliaga, I., de Roos, B., Duthie, S. J., Crosley, L. K., Mayer, C., Horgan, G., et al. (2011). Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics, 7, 375–387.CrossRefGoogle Scholar
  52. Schnackenberg, L. K., Sun, J., & Beger, R. D. (2009). Metabolomics in systems toxicology: Towards personalized medicine. John Wiley and Sons Ltd.Google Scholar
  53. Searle, S. R. (1971). Linear models. New York: Wiley.Google Scholar
  54. Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan, R. S., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4, 214.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Sheiner, L. B., & Ludden, T. M. (1992). Population pharmacokinetics/dynamics. The Annual Review of Pharmacology and Toxicology, 32, 185–209.CrossRefGoogle Scholar
  56. Skurk, T., Rubio-Aliaga, I., Stamfort, A., Hauner, H., & Daniel, H. (2011). New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics, 7, 388–399.CrossRefGoogle Scholar
  57. Smilde, A. K., Bro, R., & Geladi, P. (2004). Multi-way analysis. Applications in the chemical sciences. Chichester: Wiley.CrossRefGoogle Scholar
  58. Smilde, A. K., Jansen, J. J., Hoefsloot, H. C. J., Lamers, R.-J. A. N., van der Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.PubMedCrossRefGoogle Scholar
  59. Spégel, P., Danielsson, A., Bacos, K., Nagorny, C., Moritz, T., Mulder, H., et al. (2010). Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics, 6, 56–66. doi:10.1007/s11306-009-0177-z.CrossRefGoogle Scholar
  60. Thompson, G. A., & Toothaker, R. D. (2004). Urinary excretion: Does it accurately reflect relative differences in bioavailability/systemic exposure when renal clearance is nonlinear? Pharmaceutical Research, 21(5), 781–784.PubMedCrossRefGoogle Scholar
  61. Van Batenburg, M. F., Coulier, L., van Eeuwijk, F., Smilde, A. K., & Westerhuis, J. A. (2011). New figures of merit for comprehensive functional genomics data: The metabolomics case. Analytical Chemistry, 83(9), 3267–3274.PubMedCrossRefGoogle Scholar
  62. van der Greef, J., Hankemeier, T., & McBurney, R. N. (2006). Metabolomics-based systems biology and personalized medicine: Moving towards n = 1 clinical trials? Pharmacogenomics, 7(7), 1087–1094.PubMedCrossRefGoogle Scholar
  63. van Ommen, B., Keijer, J., Kleemann, R., Elliott, R., Drevon, C. A., McArdle, H., et al. (2008). The challenges for molecular nutrition research 2: Quantification of the nutritional phenotype. Genes and Nutrition, 3, 51–59.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Verbeke, G. & Molenberghs, G. (2009). Linear mixed models for longitudinal data. Springer series in statistics. Springer, New York. Includes bibliographical references (p. [523]-553) and index.Google Scholar
  65. Vis, D. J., Westerhuis, J. A., Smilde, A. K., & van der Greef, J. (2007). Statistical validation of megavariate effects in ASCA. BMC Bioinformatics, 8, 322.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Wang, C., Lv, L., Yang, Y., Chen, D., Liu, G., Chen, L., et al. (2011). Glucose fluctuations in subjects with normal glucose tolerance, impaired glucose regulation and newly-diagnosed Type 2 diabetes mellitus. Clinical Endocrinology (Oxford), 76(6), 810–815.CrossRefGoogle Scholar
  67. Westerhuis, J. A., Derks, E. P. P. A., Hoefsloot, H. C. J., & Smilde, A. K. (2007). Grey component analysis. Journal of Chemometrics, 21(10–11), 474–485.CrossRefGoogle Scholar
  68. WHO. (2006). Constitution of the World Health Organization.Google Scholar
  69. Wopereis, S., Rubingh, C. M., van Erk, M. J., Verheij, E. R., van Vliet, T., Cnubben, N. H. P., et al. (2009). Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One, 4(2), e4525.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Xia, J. G., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(W1), W127–W133.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Xiong, H., & Choe, Y. (2008). Dynamical pathway analysis. BMC Systems Biology, 2, 9.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Zhao, X., Peter, A., Fritsche, J., Elcnerova, M., Fritsche, A., Häring, H.-U., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? The American Journal of Physiology - Endocrinology and Metabolism, 296(2), E384–E393.CrossRefGoogle Scholar
  73. Zivkovic, A. M., Wiest, M. M., Nguyen, U., Nording, M. L., Watkins, S. M., & German, J. B. (2009). Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics, 5(2), 209–218.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daniel J. Vis
    • 1
    • 2
    • 3
    • 7
  • Johan A. Westerhuis
    • 2
    • 7
  • Doris M. Jacobs
    • 4
    • 7
  • John P. M. van Duynhoven
    • 4
    • 6
    • 7
  • Suzan Wopereis
    • 5
    • 7
  • Ben van Ommen
    • 5
    • 7
  • Margriet M. W. B. Hendriks
    • 3
    • 7
  • Age K. Smilde
    • 2
    • 7
  1. 1.Department of Metabolic DiseasesUniversity Medical CenterUtrechtThe Netherlands
  2. 2.Biosystems Data Analysis, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.LACDRLeiden UniversityLeidenThe Netherlands
  4. 4.Unilever R&DVlaardingenThe Netherlands
  5. 5.TNOZeistThe Netherlands
  6. 6.Wageningen UniversityWageningenThe Netherlands
  7. 7.Netherlands Metabolomics CentreLeidenThe Netherlands

Personalised recommendations