Metabolomics

, Volume 10, Issue 6, pp 1059–1073 | Cite as

Population-based nutrikinetic modeling of polyphenol exposure

  • Ewoud J. J. van Velzen
  • Johan A. Westerhuis
  • Christian H. Grün
  • Doris M. Jacobs
  • Paul H. C. Eilers
  • Theo P. Mulder
  • Martin Foltz
  • Ursula Garczarek
  • Rober Kemperman
  • Elaine E. Vaughan
  • John P. M. van Duynhoven
  • Age K. Smilde
Original Article

Abstract

The beneficial health effects of fruits and vegetables have been attributed to their polyphenol content. These compounds undergo many bioconversions in the body. Modeling polyphenol exposure of humans upon intake is a prerequisite for understanding the modulating effect of the food matrix and the colonic microbiome. This modeling is not a trivial task and requires a careful integration of measuring techniques, modeling methods and experimental design. Moreover, both at the population level as well as the individual level polyphenol exposure has to be quantified and assessed. We developed a strategy to quantify polyphenol exposure based on the concept of nutrikinetics in combination with population-based modeling. The key idea of the strategy is to derive nutrikinetic model parameters that summarize all information of the polyphenol exposure at both individual and population level. This is illustrated by a placebo-controlled crossover study in which an extract of wine/grapes and black tea solids was administered to twenty subjects. We show that urinary and plasma nutrikinetic time-response curves can be used for phenotyping the gut microbial bioconversion capacity of individuals. Each individual harbours an intrinsic microbiota composition converting similar polyphenols from both test products in the same manner and stable over time. We demonstrate that this is a novel approach for associating the production of two gut-mediated γ-valerolactones to specific gut phylotypes. The large inter-individual variation in nutrikinetics and γ-valerolactones production indicated that gut microbial metabolism is an essential factor in polyphenol exposure and related potential health benefits.

Keywords

Black tea Grapes HPLC Human intestinal tract chip Microbiota NMR Nutrikinetics Nutrition Pharmacokinetics Phylogenetic analysis Red wine Valerolactones 

Supplementary material

11306_2014_645_MOESM1_ESM.pdf (642 kb)
Supplementary material 1 (PDF 642 kb)
11306_2014_645_MOESM2_ESM.pdf (544 kb)
Supplementary material 2 (PDF 544 kb)
11306_2014_645_MOESM3_ESM.pdf (270 kb)
Supplementary material 3 (PDF 269 kb)
11306_2014_645_MOESM4_ESM.pdf (1.2 mb)
Supplementary material 4 (PDF 1262 kb)

References

  1. Abdel-Rahman, S. M., & Kauffman, R. E. (2004). The integration of pharmacokinetics and pharmacodynamics: Understanding dose-response. Annual Review of Pharmacology and Toxicology, 44, 111–136.CrossRefPubMedGoogle Scholar
  2. Actis-Goretta, L., Leveques, A., Rein, M., Teml, A., Schafer, C., Hofmann, U., et al. (2013). Intestinal absorption, metabolism, and excretion of (−)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. American Journal of Clinical Nutrition, 98, 924–933.CrossRefPubMedGoogle Scholar
  3. Ariano, R. E., Duke, P. C., & Sitar, D. S. (2012). The influence of sparse data sampling on population pharmacokinetics: A post hoc analysis of a pharmacokinetic study of morphine in healthy volunteers. Clinical Therapeutics, 34, 668–676.CrossRefPubMedGoogle Scholar
  4. Blaut, M., Schoefer, L., & Braune, A. (2003). Transformation of flavonoids by intestinal microorganisms. International Journal for Vitamin and Nutrition Research, 73, 79–87.CrossRefPubMedGoogle Scholar
  5. Combes, F. P., Retout, S., Frey, N., & Mentre, F. (2013). Prediction of shrinkage of individual parameters using the bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharmaceutical Research, 30, 2355–2387.CrossRefPubMedGoogle Scholar
  6. Dall’Asta, M., Calani, L., Tedeschi, M., Jechiu, L., Brighenti, F., & Del Rio, D. (2012). Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition, 28, 197–203.CrossRefPubMedGoogle Scholar
  7. Davidian, M., & Giltinan, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural Biological and Environmental Statistics, 8, 387–419.CrossRefGoogle Scholar
  8. Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, 18, 1818–1892.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Donovan, J. L., Bell, J. R., Kasim-Karakas, S., German, J. B., Walzem, R. L., Hansen, R. J., et al. (1999). Catechin is present as metabolites in human plasma after consumption of red wine. Journal of Nutrition, 129, 1662–1668.PubMedGoogle Scholar
  10. Donovan, J. L., Crespy, V., Manach, C., Morand, C., Besson, C., Scalbert, A., et al. (2001). Catechin is metabolized by both the small intestine and liver of rats. Journal of Nutrition, 131, 1753–1757.PubMedGoogle Scholar
  11. Gross, G., Jacobs, D. M., Peters, S., Possemiers, S., van Duynhoven, J., Vaughan, E. E., et al. (2010). In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. Journal of Agriculture and Food Chemistry, 58, 10236–10246.CrossRefGoogle Scholar
  12. Grün, C. H., Van Dorsten, F. A., Jacobs, D. M., Le Belleguic, M., van Velzen, E. J. J., Bingham, M. O., et al. (2008). GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies. Journal of Chromatography B, 871, 212–219.Google Scholar
  13. Jacobs, D. M., Fuhrmann, J. C., Van Dorsten, F. A., Rein, D., Peters, S., van Velzen, E. J. J., et al. (2012). Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. Journal of Agriculture and Food Chemistry, 60, 3078–3085.CrossRefGoogle Scholar
  14. Jalanka-Tuovinen, J., Salonen, A., Nikkila, J., Immonen, O., Kekkonen, R., Lahti, L., et al. (2011). Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One, 6, e23035.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kay, C. D. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19, 137–146.CrossRefPubMedGoogle Scholar
  16. Kay, C. D. (2010). The future of flavonoid research. British Journal of Nutrition, 104(Suppl 3), 91–95.CrossRefGoogle Scholar
  17. Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology, 156, 3224–3231.CrossRefPubMedGoogle Scholar
  18. Kemperman, R. A., Gross, G., Mondot, S., Possemiers, S., Marzorati, M., van de Wiele, T., et al. (2013). Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International, 53, 659–669.CrossRefGoogle Scholar
  19. Kohri, T., Suzuki, M., & Nanjo, F. (2003). Identification of metabolites of (−)-epicatechin gallate and their metabolic fate in the rat. Journal of Agricultural and Food Chemistry, 51, 5561–5566.CrossRefPubMedGoogle Scholar
  20. Kutschera, M., Engst, W., Blaut, M., & Braune, A. (2011). Isolation of catechin-converting human intestinal bacteria. Journal of Applied Microbiology, 111, 165–175.CrossRefPubMedGoogle Scholar
  21. Lahti, L., Salonen, A., Kekkonen, R. A., Salojarvi, J., Jalanka-Tuovinen, J., Palva, A., et al. (2013). Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ, 1, e32.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee, M. J., Maliakal, P., Chen, L., Meng, X., Bondoc, F. Y., Prabhu, S., et al. (2002). Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiology Biomarkers and Prevention, 11, 1025–1032.Google Scholar
  23. Loke, W. M., Jenner, A. M., Proudfoot, J. M., McKinley, A. J., Hodgson, J. M., Halliwel, B., et al. (2009). A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. Journal of Nutrition, 139, 2309–2314.CrossRefPubMedGoogle Scholar
  24. Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79, 727–747.PubMedGoogle Scholar
  25. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition, 81, 230–242.Google Scholar
  26. Marotti, I., Bonetti, A., Biavati, B., Catizone, P., & Dinelli, G. (2007). Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. Journal of Agriculture and Food Chemistry, 55, 3913–3919.CrossRefGoogle Scholar
  27. Mata-Bilbao, M. D., Andres-Lacueva, C., Roura, E., Jauregui, O., Escribano, E., Torre, C., et al. (2008). Absorption and pharmacokinetics of green tea catechins in beagles. British Journal of Nutrition, 100, 496–502.CrossRefGoogle Scholar
  28. Matsukawa, N., Matsumoto, M., & Hara, H. (2009). High biliary excretion levels of quercetin metabolites after administration of a quercetin glycoside in conscious bile duct cannulated rats. Bioscience, Biotechnology, and Biochemistry, 73, 1863–1865.CrossRefPubMedGoogle Scholar
  29. McGhie, T. K., & Rowan, D. D. (2012). Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science. Molecular Nutrition and Food Research, 56, 147–158.CrossRefPubMedGoogle Scholar
  30. Meng, X. F., Sang, S. M., Zhu, N. Q., Lu, H., Sheng, S. Q., Lee, M. J., et al. (2002). Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chemical Research in Toxicology, 15, 1042–1050.CrossRefPubMedGoogle Scholar
  31. Moco, S., Martin, F. P., & Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of Proteome Research, 11, 4781–4790.CrossRefPubMedGoogle Scholar
  32. Munoz-Gonzalez, I., Jimenez-Giron, A., Martin-Alvarez, P. J., Bartolome, B., & Moreno-Arribas, M. V. (2013). Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. Journal of Agriculture and Food Chemistry, 61, 9470–9479.CrossRefGoogle Scholar
  33. Olthof, M. R., Hollman, P. C. H., Buijsman, M. N. C. P., Van Amelsvoort, J. M. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. Journal of Nutrition, 133, 1806–1814.PubMedGoogle Scholar
  34. Pandey, K. B., & Rizvi, S. I. (2010). Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytotherapy Research, 24, S11–S14.CrossRefPubMedGoogle Scholar
  35. Perez-Jimenez, J., Fezeu, L., Touvier, M., Arnault, N., Manach, C., Hercberg, S., et al. (2011). Dietary intake of 337 polyphenols in French adults. American Journal of Clinical Nutrition, 93, 1220–1228.CrossRefPubMedGoogle Scholar
  36. Rajilic-Stojanovic, M., Heilig, H. G. H. J., Molenaar, D., Kajander, K., Surakka, A., Smidt, H., et al. (2009). Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environmental Microbiology, 11, 1736–1751.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Renouf, M., Redeuil, K., Longet, K., Marmet, C., Dionisi, F., Kussmann, M., et al. (2011). Plasma pharmacokinetics of catechin metabolite 4′-O-Me-EGC in healthy humans. European Journal of Nutrition, 50, 575–580.CrossRefPubMedGoogle Scholar
  38. Sanchez-Patan, F., Cueva, C., Monagas, M., Walton, G. E., Gibson, G. R., Monagas, M., et al. (2012a). Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry, 131, 337–347.CrossRefGoogle Scholar
  39. Sanchez-Patan, F., Cueva, C., Monagas, M., Walton, G. E., Gibson, G. R., Quintanilla-Lopez, J. E., et al. (2012b). In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. Journal of Agriculture and Food Chemistry, 60, 2136–2147.CrossRefGoogle Scholar
  40. Scalbert, A., Morand, C., Manach, C., & Remesy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine and Pharmacotherapy, 56, 276–282.CrossRefPubMedGoogle Scholar
  41. Seeram, N. P., Henning, S. M., Zhang, Y., Suchard, M., Li, Z., & Heber, D. (2006). Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. The Journal of Nutrition, 136, 2481–2485.PubMedGoogle Scholar
  42. Selma, M. V., Espin, J. C., & Tomas-Barberan, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. Journal of Agriculture and Food Chemistry, 57, 6485–6501.CrossRefGoogle Scholar
  43. Sies, H. (2010). Polyphenols and health: Update and perspectives. Archives of Biochemistry and Biophysics, 501, 2–5.CrossRefPubMedGoogle Scholar
  44. Spencer, J. P. E., Mohsen, M. M. A., Minihane, A. M., & Mathers, J. C. (2008). Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition, 99, 12–22.PubMedGoogle Scholar
  45. Van den Abbeele, P., Grootaert, C., Marzorati, M., Possemiers, S., Verstraete, W., Gerard, P., et al. (2010). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Applied and Environmental Microbiology, 76, 5237–5246.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Van den Bogert, B., de Vos, W. M., Zoetendal, E. G., & Kleerebezem, M. (2011). Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Applied and Environmental Microbiology, 77, 2071–2080.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Van Dorsten, F. A., Peters, S., Gross, G., Gomez-Roldan, V., Klinkenberg, M., de Vos, R. C., et al. (2012). Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. Journal of Agriculture and Food Chemistry, 60, 11331–11342.CrossRefGoogle Scholar
  48. Van Duynhoven, J. P. M., Van Velzen, E. J. J., Westerhuis, J. A., Foltz, M., Jacobs, D. M., & Smilde, A. K. (2012). Nutrikinetics: Concept, technologies, applications, perspectives. Trends in Food Science and Technology, 26, 4–13.CrossRefGoogle Scholar
  49. Van Duynhoven, J. P. M., Vaughan, E. E., Jacobs, D. M., Kemperman, A., Van Velzen, E. J. J., Gross, G., et al. (2011). The metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences, 108, 4531–4538.CrossRefGoogle Scholar
  50. Van Duynhoven, J. P. M., Vaughan, E. E., van Dorsten, F., Gomez-Roldan, V., de Vos, R., Vervoort, J., et al. (2013). Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. The American Journal of Clinical Nutrition, 98, 1631–1641.CrossRefGoogle Scholar
  51. Van Ommen, B., Bouwman, J., Dragsted, L. O., Drevon, C. A., Elliott, R., de, G. P., et al. (2010). Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes and Nutrition, 5, 189–203.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Van Velzen, E. J. J., Westerhuis, J. A., Van Duynhoven, J. P. M., Van Dorsten, F. A., Grun, C. H., Jacobs, D. M., et al. (2009). Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. Journal of Proteome Research, 8, 3317–3330.CrossRefPubMedGoogle Scholar
  53. Van Velzen, E. J. J., Westerhuis, J. A., Van Duynhoven, J. P. M., Van Dorsten, F. A., Hoefsloot, H. C., Smit, S., et al. (2008). Multilevel data analysis in crossover-designed human intervention studies. Journal of Proteome Research, 7, 4483–4491.CrossRefPubMedGoogle Scholar
  54. Williamson, G., & Clifford, M. N. (2010). Colonic metabolites of berry polyphenols: The missing link to biological activity? British Journal of Nutrition, 104(Suppl 3), 48–66.CrossRefGoogle Scholar
  55. Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. American Journal of Clinical Nutrition, 81, 243–255.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ewoud J. J. van Velzen
    • 1
    • 2
    • 3
  • Johan A. Westerhuis
    • 1
    • 3
  • Christian H. Grün
    • 2
  • Doris M. Jacobs
    • 2
    • 3
  • Paul H. C. Eilers
    • 4
  • Theo P. Mulder
    • 2
  • Martin Foltz
    • 2
  • Ursula Garczarek
    • 2
  • Rober Kemperman
    • 2
  • Elaine E. Vaughan
    • 2
  • John P. M. van Duynhoven
    • 2
    • 3
    • 5
  • Age K. Smilde
    • 1
    • 3
  1. 1.Biosystems Data AnalysisUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Unilever Research and DevelopmentVlaardingenThe Netherlands
  3. 3.Netherlands Metabolomics CentreLeidenThe Netherlands
  4. 4.Department of BiostatisticsErasmus University Medical CentreRotterdamThe Netherlands
  5. 5.Laboratory of BiophysicsWageningen UniversityWageningenThe Netherlands

Personalised recommendations