Metabolomics

, Volume 10, Issue 5, pp 775–787 | Cite as

Metabolic map of mature maize kernels

  • Jun Rao
  • Fang Cheng
  • Chaoyang Hu
  • Sheng Quan
  • Hong Lin
  • Jing Wang
  • Guihua Chen
  • Xiangxiang Zhao
  • Danny Alexander
  • Lining Guo
  • Guoying Wang
  • Jinsheng Lai
  • Dabing Zhang
  • Jianxin Shi
Original Article

Abstract

Metabolites in maize kernels are associated not only with nutritional value but also physiological properties such as maturation, desiccation, and germination. However, comprehensive information concerning the metabolome of maize kernels is limited. In this study, we identified 210 metabolites in mature kernels of 14 representative maize lines using a non-targeted metabolomic profiling approach. Further statistical analysis revealed that 75 metabolites were significantly variable among those tested lines, and certain metabolites out of the detected 210 metabolites played critical roles in distinguishing one line from another. Additionally, metabolite–metabolite correlation analysis dissected key regulatory elements or pathways involved in metabolism of lipids, amino acids and carbohydrates. Furthermore, an integrated metabolic map constructed with transcriptomic, proteomic and metabolic data uncovered characteristic regulatory mechanisms of maize kernel metabolism. Altogether, this work provides new insights into the maize kernel metabolome that would be useful for metabolic engineering and/or molecular breeding to improve maize kernel quality and yield.

Keywords

Metabolomics Metabolite–metabolite correlation Natural variation Nutritional quality Physiological property Zea mays 

Supplementary material

11306_2014_624_MOESM1_ESM.pdf (285 kb)
Supplementary material 1 (PDF 285 kb)
11306_2014_624_MOESM2_ESM.xlsx (1.3 mb)
Supplementary material 2 (XLSX 1346 kb)

References

  1. Ali, Q., Ashraf, M., Anwar, F., & Al-Qurainy, F. (2012). Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. Journal of the American Oil Chemists Society, 89, 1485–1493.Google Scholar
  2. Angelovici, R., Galili, G., Fernie, A. R., et al. (2010). Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 15(4), 211–218.CrossRefPubMedGoogle Scholar
  3. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.CrossRefGoogle Scholar
  4. Cañas, R. A., Amiour, N., Quilleré, I., et al. (2011). An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.). Journal of Experimental Botany, 62, 2309–2318.CrossRefPubMedGoogle Scholar
  5. Chang, Y., Zhao, C., Zhu, Z., et al. (2012). Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Molecular Biology, 78, 477–487.CrossRefPubMedGoogle Scholar
  6. Chen, Y., & Burris, J. S. (1990). Role of carbohydrates in desiccation tolerance and membrane behavior in maturing maize seed. Crop Science, 30, 971–975.CrossRefGoogle Scholar
  7. Chen, R., Xue, G., Chen, P., et al. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17, 633–643.CrossRefPubMedGoogle Scholar
  8. Dierking, E. C., & Bilyeu, K. D. (2009). Raffinose and stachyose metabolism are not required for efficient soybean seed germination. Journal of Plant Physiology, 166, 1329–1335.CrossRefPubMedGoogle Scholar
  9. Evans, A. M., DeHaven, C. D., Barrett, T., et al. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81(16), 6656–6667.CrossRefPubMedGoogle Scholar
  10. Fait, A., Angelovici, R., Less, H., et al. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiology, 142(3), 839–854.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fernández-Bañares, F., Esteve, M., & Viver, J. M. (2009). Fructose-sorbitol malabsorption. Current Gastroenterology Reports, 11(5), 368–374.CrossRefPubMedGoogle Scholar
  12. Fernie, A. R., & Schauer, N. (2009). Metabolomics-assisted breeding: A viable option for crop improvement? Trends in Genetics, 25, 39–48.CrossRefPubMedGoogle Scholar
  13. Frank, T., Röhlig, R. M., Davies, H. V., Barros, E., & Engel, K. H. (2012). Metabolite profiling of maize kernels–genetic modification versus environmental influence. Journal of Agriculture and Food Chemistry, 60, 3005–3012.CrossRefGoogle Scholar
  14. Fu, Z., Jin, X., Ding, D., Li, Y., Fu, Z., & Tang, J. (2011). Proteomic analysis of heterosis during maize seed germination. Proteomics, 118, 1462–1472.CrossRefGoogle Scholar
  15. Fu, J., Thiemann, A., Schrag, T., Melchinger, A., Scholten, S., & Frisch, M. (2010). Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome. BMC Plant Biology, 10, 63.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Handley, L. W., Pharr, D. M., & McFeeters, R. F. (1983). Carbohydrate changes during maturation of cucumber fruit: Implications for sugar metabolism and transport. Plant Physiology, 72, 498–502.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harrigan, G. G., Stork, L. G., Riordan, S. G., et al. (2007). Impact of genetics and environment on nutritional and metabolite components of maize grain. Journal of Agriculture and Food Chemistry, 55, 6177–6185.CrossRefGoogle Scholar
  18. Islam, M. S., & Sakaguchi, E. (2006). Sorbitol-based osmotic diarrhea: Possible causes and mechanism of prevention investigated in rats. World Journal of Gastroenterology, 12, 7635–7641.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jacobson, E. L., Lange, R. A., & Jacobson, M. K. (1979). Pyridine nucleotide synthesis in 3T3 cells. Journal of Cellular Physiology, 99, 417–425.CrossRefPubMedGoogle Scholar
  20. Jiao, Y., Zhao, H., Ren, L., et al. (2012). Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 44, 812–815.CrossRefPubMedGoogle Scholar
  21. Kametani, T., & Furuyama, H. (1987). Synthesis of vitamin D3 and related compounds. Medicinal Research Reviews, 7, 147–171.CrossRefPubMedGoogle Scholar
  22. Keurentjes, J. J., Fu, J., De Vos, C. R., et al. (2006). The genetics of plant metabolism. Nature Genetics, 38, 842–849.CrossRefPubMedGoogle Scholar
  23. Kusano, M., Fukushima, A., Redestig, H., & Saito, K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 62(4), 1439–1453.CrossRefPubMedGoogle Scholar
  24. Lai, J., Li, R., Xu, X., et al. (2010). Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 42, 1027–1030.CrossRefPubMedGoogle Scholar
  25. Lawton, K. A., Berger, A., Mitchell, M., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9(4), 383–397.CrossRefPubMedGoogle Scholar
  26. Li, H., Peng, Z., Yang, X., et al. (2012a). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.CrossRefPubMedGoogle Scholar
  27. Li, Q., Yang, X., Xu, S., et al. (2012b). Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS ONE, 7, e36807.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lisec, J., Römisch-Margl, L., Nikoloski, Z., et al. (2011). Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. Plant Journal, 68, 326–336.CrossRefPubMedGoogle Scholar
  29. Liu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165, 2117–2128.PubMedPubMedCentralGoogle Scholar
  30. Liu, Q., Majdi, M., Cankar, K., et al. (2011). Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotianabenthamiana. PLoS ONE, 6, e23255.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99, 6080–6084.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moussaieff, A., Rogachev, I., Brodsky, L., et al. (2013). High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences of the United States of America, 110, E1232–E1241.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nambara, E., & Nonogaki, H. (2012). Seed biology in the 21st century: Perspectives and new directions. Plant and Cell Physiology, 53, 1–4.CrossRefPubMedGoogle Scholar
  34. Nowacki, J., & Bandurski, R. S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiology, 65, 422–427.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37(4), 521–535.CrossRefPubMedGoogle Scholar
  36. Oliver, M. J., Guo, L., Alexander, D. C., Ryals, J. A., Wone, B. W., & Cushman, J. C. (2011). A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell, 23, 1231–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Raboy, V., Gerbasi, P. F., Young, K. A., et al. (2000). Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology, 124, 355–368.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Raboy, V., Young, K. A., Dorsch, J. A., & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 158, 489–497.CrossRefGoogle Scholar
  39. Rao, J., Yang, L., Wang, C., Zhang, D., & Shi, J. (2013). Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 4(2), 1–11.CrossRefGoogle Scholar
  40. Redzynia, I., Ziółkowska, N. E., Majzner, W. R., et al. (2009). Structural investigation of biologically active phenolic compounds isolated from European tree species. Molecules, 14, 4147–4158.CrossRefPubMedGoogle Scholar
  41. Reumann, S., Quan, S., Aung, K., et al. (2009). In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiology, 150, 125–143.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., et al. (2012a). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44, 217–220.CrossRefPubMedGoogle Scholar
  43. Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., et al. (2012b). Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the United States of America, 109, 8872–8877.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schmid, M., Davison, T. S., Henz, S. R., et al. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37, 501–506.CrossRefPubMedGoogle Scholar
  45. Schmid, K. M., & Ohlrogge, J. B. (2002). Lipid metabolism in plants. New Comprehensive Biochemistry, 36, 93–126.CrossRefGoogle Scholar
  46. Serna-Saldivar, S. O., Gomez, M. H., & Rooney, L. W. (1994). Food uses of regular and specialty corns and their dry-milled fractions. In A. R. Hallauer (Ed.), Specialty corns (pp. 263–298). Boca Raton: CRC Press.Google Scholar
  47. Skogerson, K., Harrigan, G. G., Reynolds, T. L., et al. (2010). Impact of genetics and environment on the metabolite composition of maize grain. Journal of Agriculture and Food Chemistry, 58, 3600–3610.CrossRefGoogle Scholar
  48. Takaha, T., & Smith, S. M. (1999). The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnology and Genetic Engineering Reviews, 16, 257–280.CrossRefPubMedGoogle Scholar
  49. Toubiana, D., Semel, Y., Tohge, T., et al. (2012). Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genetics, 8, e1002612.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ueda, M., & Bandurski, R. S. (1969). A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiology, 44, 1175–1181.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the alpha-amylase family. Journal of Biotechnology, 94, 137–155.CrossRefPubMedGoogle Scholar
  52. Voelker, T., & Kinney, A. J. (2001). Variations in the biosynthesis of seed-storage lipids. Annual Review of Plant Biology, 52, 335–361.CrossRefGoogle Scholar
  53. Wang, G., Wang, G., Wang, F., & Song, R. (2012). A transcriptional roadmap for seed development in maize. In G. K. Agrawal & R. Rakwal (Eds.), Seed development: Omics technologies toward improvement of seed quality and crop yield (pp. 81––97). Netherlands: Springer.Google Scholar
  54. Weber, H., Heim, U., Golombek, S., Borisjuk, L., & Wobus, U. (1998). Assimilate uptake and the regulation of seed development. Seed Science Research, 8, 331–345.CrossRefGoogle Scholar
  55. Weckwerth, W., & Fiehn, O. (2002). Can we discover novel pathways using metabolomic analysis? Current Opinion in Biotechnology, 13, 156–160.CrossRefPubMedGoogle Scholar
  56. Xu, Y. Z., De la Rosa Santamaria, R., Virdi, K. S., et al. (2012). The chloroplast triggers developmental reprogramming when MUTS HOMOLOG1 is suppressed in plants. Plant Physiology, 159, 710–720.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yang, X. S., Staub, J. M., Pandravada, A., et al. (2013). Omics technologies reveal abundant natural variation in metabolites and transcripts among conventional maize hybrids. Food Nutrients, 4, 335–341.CrossRefGoogle Scholar
  58. Zachariou, M., & Scopes, R. K. (1986). Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. Journal of Bacteriology, 167, 863–869.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zheng, Z. L. (2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling and Behaviour, 4, 584–591.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jun Rao
    • 1
  • Fang Cheng
    • 1
  • Chaoyang Hu
    • 1
  • Sheng Quan
    • 1
  • Hong Lin
    • 1
  • Jing Wang
    • 1
  • Guihua Chen
    • 1
  • Xiangxiang Zhao
    • 2
  • Danny Alexander
    • 3
  • Lining Guo
    • 3
  • Guoying Wang
    • 4
  • Jinsheng Lai
    • 5
  • Dabing Zhang
    • 1
  • Jianxin Shi
    • 1
    • 6
  1. 1.National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Life ScienceHuaiyin Normal CollegeHuaianChina
  3. 3.Metabolon Inc.DurhamUSA
  4. 4.Institute of Crop SciencesChinese Academy of Agricultural ScienceBeijingChina
  5. 5.National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
  6. 6.Shanghai Ruifeng Agro-biotechnology Co., Ltd.ShanghaiChina

Personalised recommendations