, Volume 10, Issue 2, pp 270–279 | Cite as

Metabolomic profiling of sodium fluoride-induced cytotoxicity in an oral squamous cell carcinoma cell line

  • Hiroshi Sakagami
  • Masahiro Sugimoto
  • Shoji Tanaka
  • Hiromi Onuma
  • Sana Ota
  • Miku Kaneko
  • Tomoyoshi Soga
  • Masaru Tomita
Original Article


Sodium fluoride (NaF) is used in dentistry as a preventive agent for dental caries because of its ability to remineralize the tooth surface and its antibacterial effect. Although one of its target molecules in bacteria is enolase, its site of action in human cells has not been identified. The aim of this study was to identify target metabolites that are coupled to NaF-induced cytotoxicity in the HSC-2 human oral squamous cell carcinoma cell line. Cell viability, membrane integrity and apoptosis induction were analyzed by MTT assay, trypan blue exclusion and caspase-3 activation, respectively. Cells were treated with a minimal cytotoxic concentration of NaF for various times and subjected to comprehensive metabolomics analysis using capillary electrophoresis-mass spectrometry. In the early stages, inhibition of the enolase reaction in glycolysis pathway was observed. This was coupled with rapid inhibition of the progression of TCA cycle. In the later stages, gradual increases in the AMP/ATP ratio (a putative marker of apoptosis) and oxidized products (e.g. GSSH, and methionine sulfoxide), and marginal changes in polyamine levels (putative marker of necrosis) were observed. This manuscript provides the new insight into the global impact of NaF on metabolic pathways in human oral squamous cell carcinoma cells.


Fluoride Apoptotic cell death Oral squamous cell carcinoma Capillary electrophoresis time-of-flight-mass spectrometry 



The authors thank Prof. Akito Tomomura for his invaluable suggestions. This work was supported by research funds from the Yamagata Prefectural Government and the City of Tsuruoka, and in part by a Grant-in-Aid for Challenging Exploratory Research and Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (H. Sakagami, No. 25670897, S. Tanaka, No. 24593164).

Supplementary material

11306_2013_576_MOESM1_ESM.ppt (252 kb)
Supplementary material 1 (PPT 252 kb)


  1. Acra, A. M., Sakagami, H., Matsuta, T., Adachi, K., Otsuki, S., Nakajima, H., et al. (2012). Effect of three fluoride compounds on the growth of oral normal and tumor cells. In Vivo, 26, 657–664.PubMedGoogle Scholar
  2. Arnold, W. H., Haase, A., Hacklaender, J., Gintner, Z., Banoczy, J., & Gaengler, P. (2007). Effect of pH of amine fluoride containing toothpastes on enamel remineralization in vitro. BMC Oral Health, 7, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bulteau, A. L., Ikeda-Saito, M., & Szweda, L. I. (2003). Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry, 42, 14846–14855.CrossRefPubMedGoogle Scholar
  4. Coburn, R. F. (2009). Polyamine effects on cell function: Possible central role of plasma membrane PI(4,5)P2. Journal of Cellular Physiology, 221, 544–551.CrossRefPubMedGoogle Scholar
  5. Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature, 424, 952–956.CrossRefPubMedGoogle Scholar
  6. DenBesten, P. K., & Thariani, H. (1992). Biological mechanisms of fluorosis and level and timing of systemic exposure to fluoride with respect to fluorosis. Journal of Dental Research, 71, 1238–1243.CrossRefPubMedGoogle Scholar
  7. Gessner, B. D., Beller, M., Middaugh, J. P., & Whitford, G. M. (1994). Acute fluoride poisoning from a public water system. The New England Journal of Medicine, 330, 95–99.CrossRefPubMedGoogle Scholar
  8. Guha-Chowdhury, N., Clark, A. G., & Sissons, C. H. (1997). Inhibition of purified enolases from oral bacteria by fluoride. Oral Microbiology and Immunology, 12, 91–97.CrossRefPubMedGoogle Scholar
  9. Halestrap, A. (2005). Biochemistry: A pore way to die. Nature, 434, 578–579.CrossRefPubMedGoogle Scholar
  10. Hata, S., Iwami, Y., Kamiyama, K., & Yamada, T. (1990). Biochemical mechanisms of enhanced inhibition of fluoride on the anaerobic sugar metabolism by Streptococcus sanguis. Journal of Dental Research, 69, 1244–1247.CrossRefPubMedGoogle Scholar
  11. Ijaz, S., Croucher, R. E., & Marinho, V. C. (2010). Systematic reviews of topical fluorides for dental caries: A review of reporting practice. Caries Research, 44, 579–592.CrossRefPubMedGoogle Scholar
  12. Jimenez-Farfan, M. D., Hernandez-Guerrero, J. C., Juarez-Lopez, L. A., Jacinto-Aleman, L. F., & de la Fuente-Hernandez, J. (2011). Fluoride consumption and its impact on oral health. International Journal of Environmental Research and Public Health, 8, 148–160.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Karube, H., Nishitai, G., Inageda, K., Kurosu, H., & Matsuoka, M. (2009). NaF activates MAPKs and induces apoptosis in odontoblast-like cells. Journal of Dental Research, 88, 461–465.CrossRefPubMedGoogle Scholar
  14. Kaufmann, M., & Bartholmes, P. (1992). Purification, characterization and inhibition by fluoride of enolase from Streptococcus mutans DSM 320523. Caries Research, 26, 110–116.CrossRefPubMedGoogle Scholar
  15. Koh, T., Murakami, Y., Tanaka, S., Machino, M., Onuma, H., Kaneko, M., et al. (2013). Changes of metabolic profiles in oral squamous cell carcinoma cell line by eugenol. In Vivo, 27, 233–243.PubMedGoogle Scholar
  16. Kubota, K., Lee, D. H., Tsuchiya, M., Young, C. S., Everett, E. T., Martinez-Mier, E. A., et al. (2005). Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. The Journal of Biological Chemistry, 280, 23194–23202.CrossRefPubMedGoogle Scholar
  17. Li, Y., Decker, S., Yuan, Z. A., Denbesten, P. K., Aragon, M. A., Jordan-Sciutto, K., et al. (2005). Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Archives of Oral Biology, 50, 681–688.CrossRefPubMedGoogle Scholar
  18. Matsui, H., Morimoto, M., Horimoto, K., & Nishimura, Y. (2007). Some characteristics of fluoride-induced cell death in rat thymocytes: Cytotoxicity of sodium fluoride. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 21, 1113–1120.CrossRefGoogle Scholar
  19. McDonagh, M. S., Whiting, P. F., Wilson, P. M., Sutton, A. J., Chestnutt, I., Cooper, J., et al. (2000). Systematic review of water fluoridation. BMJ, 321, 855–859.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Murao, H., Sakagami, N., Iguchi, T., Murakami, T., & Suketa, Y. (2000). Sodium fluoride increases intracellular calcium in rat renal epithelial cell line NRK-52E. Biological & Pharmaceutical Bulletin, 23, 581–584.CrossRefGoogle Scholar
  21. Otsuki, S., Morshed, S. R., Chowdhury, S. A., Takayama, F., Satoh, T., Hashimoto, K., et al. (2005). Possible link between glycolysis and apoptosis induced by sodium fluoride. Journal of Dental Research, 84, 919–923.CrossRefPubMedGoogle Scholar
  22. Otsuki, S., Sugiyama, K., Amano, O., Yasui, T., & Sakagami, H. (2011). Negative regulation of NaF-induced apoptosis by Bad-CAII complex. Toxicology, 287, 131–136.CrossRefPubMedGoogle Scholar
  23. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374–378.PubMedGoogle Scholar
  24. Sharma, R., Tsuchiya, M., & Bartlett, J. D. (2008). Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environmental Health Perspectives, 116, 1142–1146.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shashikiran, N. D., Subba Reddy, V. V., & Patil, R. (2006). Evaluation of fluoride release from teeth after topical application of NaF, SnF2 and APF and antimicrobial activity on mutans streptococci. The Journal of Clinical Pediatric Dentistry, 30, 239–245.CrossRefPubMedGoogle Scholar
  26. Soga, T., Baran, R., Suematsu, M., Ueno, Y., Ikeda, S., Sakurakawa, T., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. The Journal of Biological Chemistry, 281, 16768–16776.CrossRefPubMedGoogle Scholar
  27. Sugimoto, M., Kawakami, M., Robert, M., Soga, T., & Tomita, M. (2012a). Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Current Bioinformatics, 7, 96–108.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sugimoto, M., Sakagami, H., Yokote, Y., Onuma, H., Kaneko, M., Mori, M., et al. (2012b). Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics, 8, 624–633.CrossRefGoogle Scholar
  29. Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6, 78–95.CrossRefPubMedGoogle Scholar
  30. Takahashi, N., & Washio, J. (2011). Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. Journal of Dental Research, 90, 1463–1468.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ten Cate, J. M. (2012). Novel anticaries and remineralizing agents: Prospects for the future. Journal of Dental Research, 91, 813–815.CrossRefPubMedGoogle Scholar
  32. Thrane, E. V., Refsnes, M., Thoresen, G. H., Lag, M., & Schwarze, P. E. (2001). Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK. Toxicological Sciences: An Official Journal of the Society of Toxicology, 61, 83–91.CrossRefGoogle Scholar
  33. Vale, G. C., Tabchoury, C. P., Del Bel Cury, A. A., Tenuta, L. M., ten Cate, J. M., & Cury, J. A. (2011). APF and dentifrice effect on root dentin demineralization and biofilm. Journal of Dental Research, 90, 77–81.CrossRefPubMedGoogle Scholar
  34. Wang, Y., Yin, Y., Gilula, L. A., & Wilson, A. J. (1994). Endemic fluorosis of the skeleton: Radiographic features in 127 patients. American Journal of Roentgenology, 162, 93–98.CrossRefPubMedGoogle Scholar
  35. Willinger, C. C., Moschen, I., Kulmer, S., & Pfaller, W. (1995). The effect of sodium fluoride at prophylactic and toxic doses on renal structure and function in the isolated perfused rat kidney. Toxicology, 95, 55–71.CrossRefPubMedGoogle Scholar
  36. Xie, L. H., John, S. A., Ribalet, B., & Weiss, J. N. (2007). Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. Progress in Biophysics and Molecular Biology, 94, 320–335.CrossRefPubMedGoogle Scholar
  37. Yan, X., Feng, C., Chen, Q., Li, W., Wang, H., Lv, L., et al. (2009). Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts. Archives of Toxicology, 83, 451–458.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hiroshi Sakagami
    • 1
  • Masahiro Sugimoto
    • 2
  • Shoji Tanaka
    • 3
  • Hiromi Onuma
    • 2
  • Sana Ota
    • 2
  • Miku Kaneko
    • 2
  • Tomoyoshi Soga
    • 2
  • Masaru Tomita
    • 2
  1. 1.Division of PharmacologyMeikai University School of DentistrySakadoJapan
  2. 2.Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
  3. 3.Division of Oral DiagnosisMeikai University School of DentistrySakadoJapan

Personalised recommendations