Metabolomics

, Volume 10, Issue 2, pp 203–211 | Cite as

Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy

  • Khairunisa Khairudin
  • Nur Afiqah Sukiran
  • Hoe-Han Goh
  • Syarul Nataqain Baharum
  • Normah Mohd Noor
Original Article

Abstract

Fourier transform infrared spectroscopy was used to characterise highland and lowland populations of Polygonum minus Huds. grown in different controlled environments. A thermal perturbation technique of two-dimensional correlation infrared spectroscopy (2D-IR) correlation spectra was applied to establish differences between the populations. The absorption peaks at 3,480 cm−1 (hydroxyl group), 2,927 cm−1 (methyl group), 1,623 cm−1 (carbonyl group), and 1,068 cm−1 (C–O group) were particularly powerful in separating the populations. These peaks, which indicate the presence of carbohydrate, terpenes, amide and flavonoids were more intense for the highland populations than lowland populations, and increased in environments with a higher temperature. Wavenumbers (1,634, 669 cm−1) and (1,634, 1,555 cm−1) in the 2D-IR correlation spectra provided fingerprint signals to differentiate plants grown at different temperatures. This study demonstrates that IR fingerprinting, which combines mid-IR spectra and 2D-IR correlation spectra, can directly discriminate different populations of P. minus and the effects of temperature.

Keywords

Fourier transform infrared spectroscopy (FTIR) Two-dimensional correlation infrared spectroscopy (2D-IR) Plant populations Temperature effect Metabolite screening 

Supplementary material

11306_2013_570_MOESM1_ESM.tif (125 kb)
Supplementary material 1 (TIFF 125 kb)
11306_2013_570_MOESM2_ESM.tif (3.1 mb)
Supplementary material 2 (TIFF 3136 kb)
11306_2013_570_MOESM3_ESM.tif (6.4 mb)
Supplementary material 3 (TIFF 6509 kb)
11306_2013_570_MOESM4_ESM.tif (136 kb)
Supplementary material 4 (TIFF 136 kb)
11306_2013_570_MOESM5_ESM.doc (38 kb)
Supplementary material 5 (DOC 37 kb)

References

  1. Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions: A review. Physiologia Plantarum, 132, 117–135.PubMedGoogle Scholar
  2. Baharum, S. N., Bunawan, H., Ghani, M. A., Mustapha, W. A. W., & Noor, N. M. (2010). Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules, 15, 7006–7015.CrossRefPubMedGoogle Scholar
  3. Beekes, M., Lasch, P., & Naumann, D. (2007). Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, 123, 305–319.CrossRefPubMedGoogle Scholar
  4. Bunawan, H., Chee, Y. C., Md-Zain, B. M., Baharum, S. N., & Noor, N. M. (2011a). Molecular Systematics of Polygonum minus Huds. based on ITS Sequences. International Journal of Molecular Sciences, 12, 7626–7634.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bunawan, H., Talip, N., & Noor, N. M. (2011b). Foliar anatomy and micromorphology of Polygonum minus Huds. and their taxonomic implications. Australian Journal of Crop Science, 5(2), 123–127.Google Scholar
  6. Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gianfagna, T. J., Carter, C. D., & Sacalis, J. N. (1992). Temperature and photoperiod influence trichome density and sesquiterpene content of Lycopersicon hirsutum f. hirsutum. Plant Physiology, 100, 1403–1405.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gomez-Romero, M., Segura-Carretero, A., & Fernandez-Gutierrez, (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71, 1848–1864.CrossRefPubMedGoogle Scholar
  9. Hayashi, H. (2001). Plant Temperature Stress. doi:10.1038/npg.els.0001320.Google Scholar
  10. Huda-Faujan, N., Noriham, A., Norrakiah, A. S., & Babji, A. S. (2007). Antioxidative activities of water extracts of some Malaysian herbs. ASEAN Food Journal, 14(1), 61–68.Google Scholar
  11. Ikeda, T., Kanaya, S., Kobayashi, A., Yonetani, T., & Fukusaki, E. (2007). Prediction of Japanese green tea ranking by Fourier transform near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 55, 9908–9912.CrossRefPubMedGoogle Scholar
  12. Janas, K. M., Cvikrova, M., Palagiewicz, A., & Eder, J. (2000). Alterations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiology and Biochemistry, 38, 587–593.CrossRefGoogle Scholar
  13. Jie, Z., Xiaodong, J., Tianlai, L., & Zaiqiang, Y. (2012). Effect of moderately-high temperature stress on photosynthesis and carbohydrate metabolism in tomato (Lycopersico esculentum L.) leaves. African Journal of Agricultural Research, 7(3), 487–492.Google Scholar
  14. Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Current Opinion in Microbiology, 7, 296–307.CrossRefPubMedGoogle Scholar
  15. Kemsley, E. K., Belton, P. S., McCann, M. C., Ttofis, S., Wilson, R. H., & Delgadillo, I. (1994). A rapid method for the authentication of vegetable matter using Fourier transform infrared spectroscopy. Food Control, 5, 241–243.CrossRefGoogle Scholar
  16. Lafta, A. M., & Lorenzen, J. H. (1995). Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology, 109(2), 637–643.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li, Y. M., Sun, S. Q., Zhou, Q., et al. (2004). Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy, 36, 227–232.CrossRefGoogle Scholar
  18. Lyons, J. M. (1973). Chilling injury in plants. Annual Review of Plant Physiology, 24, 445–466.CrossRefGoogle Scholar
  19. Martz, F. O., Peltola, R., Julkunen-Tiitto, R., Fontanay, S., & Stark, S. (2009). Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (juniperus communis) needles and evaluation of their antibacterial activity in the Boreal zone. Journal of Agricultural and Food Chemistry, 57, 9575–9584.CrossRefPubMedGoogle Scholar
  20. Miguel, A. R., Maria, M. R., Rosa, C., Nicolas, C., Juan, M. R., & Luis, R. (2007). Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 113, 244–249.CrossRefGoogle Scholar
  21. Naghdi-Badi, H., Dastpak, H. A., & Ziai, S. A. (2004). A Review of Psyllium Plant (Plantago ovata Forsk. and Plantago psyllium L.). Journal of Medicinal Plants, 3, 1–13.Google Scholar
  22. Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.CrossRefPubMedGoogle Scholar
  23. Oquist, G. (1983). Effects of low-temperature on photosynthesis. Plant Cell and Environment, 6, 281–300.Google Scholar
  24. Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2001). Introduction to spectroscopy (3rd ed.). USA: Thomson Learning.Google Scholar
  25. Ridley, H. N. (1967). The Flora of the Malay Peninsula. Ashford: L. Reeve & Co.Google Scholar
  26. Rosenfeld, H. J., Aaby, K., & Lea, P. (2002). Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. Journal of the Science of Food and Agriculture, 82(12), 1384–1390.CrossRefGoogle Scholar
  27. Roslan, N. D., Yusop, J. M., Baharum, S. N., et al. (2012). flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. International Journal of Molecular Sciences, 13, 2692–2706.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Said, S. A., Fernandez, C., Greff, S., et al. (2011). Inter-population variability of terpenoid composition in leaves of Pistacia lentiscus L. from Algeria: A chemoecological approach. Molecules, 16(3), 2646–2657.CrossRefPubMedGoogle Scholar
  29. Sharkey, T. D., & Singsaas, E. L. (1995). Why plants emit isoprene. Nature, 374, 769.CrossRefGoogle Scholar
  30. Singsaas, E. L., Lerdau, M., Winter, K., & Sharkey, T. D. (1997). Isoprene increases thermotolerance of isoprene-emitting leaves. Plant Physiology, 115, 1413–1420.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sun, S. Q., Zhou, Q., & Chen, J. B. (2011). Infrared spectroscopy for complex mixtures: application in food and traditional medicine. Beijing: Chemical Industry Press.Google Scholar
  32. Suzuki, M., Kusano, M., Takahashi, H., et al. (2010). Rice-Arabidopsis FOX line screening with FT-NIR-based fingerprinting for GC-TOF/MS-based metabolite profiling. Metabolomics, 6(1), 137–145. doi:10.1007/s11306-009-0182-2.CrossRefGoogle Scholar
  33. Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell and Environment, 28, 318–327.CrossRefGoogle Scholar
  34. Vokou, D., Kokkini, S., & Bessiere, J. M. (1993). Geographic-variation of Greek oregano (Origanum Vulgare ssp. Hirtum) essential oils. Biochemical Systematics and Ecology, 21, 287–295.CrossRefGoogle Scholar
  35. Wei, Y. M., Wang, L. H., Cao, F. L., Wei, S. Q., & Liang, Y. D. (2010). Variation and cluster analysis on leaf characters from different provenance sources of Polygonum multiflorum Thunb. Agricultural Science and Technology, 11, 94–98.Google Scholar
  36. Wilks, P. (2006). NIR versus Mid-IR: How to choose. Spectroscopy, 21(4), 43–48.Google Scholar
  37. Xu, C., Wang, Y., Chen, J., et al. (2013). Infrared macro-fingerprint analysis-through-separation for holographic chemical characterization of herbal medicine. Journal of Pharmaceutical and Biomedical Analysis, 74, 298–307.CrossRefPubMedGoogle Scholar
  38. Yaacob, K. B. (1987). Kesom oil: A natural source of aliphatic aldehydes. Perfumer and Flavorist, 12, 27–30.Google Scholar
  39. Zhang, Z. X., Liu, P., Kang, H. J., Liao, C. C., Chen, Z. L., & Xu, G. D. (2008). A study of the diversity of different geographical populations of Emmenopterys henryi using FTIR based on principal component analysis and cluster analysis. Spectroscopy Spectral Analysis, 28(9), 2081–2086.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Khairunisa Khairudin
    • 1
  • Nur Afiqah Sukiran
    • 1
  • Hoe-Han Goh
    • 1
  • Syarul Nataqain Baharum
    • 1
  • Normah Mohd Noor
    • 1
  1. 1.Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations