, Volume 9, Issue 6, pp 1262–1273 | Cite as

A relationship between Pseudomonal growth behaviour and cystic fibrosis patient lung function identified in a metabolomic investigation

  • Justyna Kozlowska
  • Damian W. Rivett
  • Louic S. Vermeer
  • Mary P. Carroll
  • Kenneth D. Bruce
  • A. James Mason
  • Geraint B. RogersEmail author
Original Article


Chronic polymicrobial lung infections in adult cystic fibrosis patients are typically dominated by high levels of Pseudomonas aeruginosa. Determining the impact of P. aeruginosa growth on airway secretion composition is fundamental to understanding both the behaviour of this pathogen in vivo, and its relationship with other potential colonising species. We hypothesised that the marked differences in the phenotypes of clinical isolates would be reflected in the metabolite composition of spent culture media. 1H NMR spectroscopy was used to characterise the impact of P. aeruginosa growth on a synthetic medium as part of an in vitro CF lower airways model system. Comparisons of 15 CF clinical isolates were made and four distinct metabolomic clusters identified. Highly significant relationships between P. aeruginosa isolate cluster membership and both patient lung function (FEV1) and spent culture pH were identified. This link between clinical isolate growth behaviour and FEV1 indicates characterisation of P. aeruginosa growth may find application in predicting patient lung function while the significant divergence in metabolite production and consumption observed between CF clinical isolates suggests dominant isolate characteristics have the potential to play both a selective role in microbiota composition and influence pseudomonal behaviour in vivo.


NMR Cystic fibrosis Pseudomonal Lung function 



This study was supported by the Anna Trust. JK is supported by a BBSRC Industrial CASE studentship.

Supplementary material

11306_2013_538_MOESM1_ESM.pptx (2.5 mb)
Supplementary material 1 (PPTX 2.53 mb)


  1. Aaron, S. D., Kottachchi, D., Ferris, W. J., Vandemheen, K. L., St Denis, M. L., Plouffe, A., et al. (2004). Sputum versus bronchoscopy for diagnosis of Pseudomonas aeruginosa biofilms in cystic fibrosis. European Respiratory Journal, 24, 631–637.CrossRefPubMedGoogle Scholar
  2. Andersson, M. (2009). A comparison of nine PLS1 algorithms. Journal of Chemometrics, 23, 518–529.CrossRefGoogle Scholar
  3. Armougom, F., Bittar, F., Stremler, N., Rolain, J. M., Robert, C., Dubus, J. C., et al. (2009). Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. European Journal of Clinical Microbiology and Infectious Diseases, 28, 1151–1154.CrossRefPubMedGoogle Scholar
  4. Barth, A. L., & Pitt, T. L. (1995). Auxotrophy of Burkholderia (Pseudomonas) cepacia from cystic fibrosis patients. Journal of Clinical Microbiology, 33, 2192–2194.PubMedPubMedCentralGoogle Scholar
  5. Beneduci, A., Chidichimo, G., Dardo, G., & Pontoni, G. (2011). Highly routinely reproducible alignment of 1H NMR spectral peaks if metabolites in huge sets of urines. Analytica Chimica Acta, 685, 186–195.CrossRefPubMedGoogle Scholar
  6. Bernier, S. P., Ha, D. G., Khan, W., Merritt, J. H., & O’Toole, G. A. (2011). Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Research in Microbiology, 162, 680–688.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bjarnsholt, T., Jensen, P. Ø., Jakobsen, T. H., Phipps, R., Nielsen, A. K., Rybtke, M. T., et al. (2010). Scandinavian cystic fibrosis study consortium. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE, 5, e10115.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boucher, R. C. (2004). New concepts of the pathogenesis of cystic fibrosis lung disease. European Respiratory Journal, 23, 146–158.CrossRefPubMedGoogle Scholar
  9. CF Foundation. 2007. Patient registry annual data report.
  10. Ciofu, O., Mandsberg, L. F., Wang, H., & Høiby, N. (2012). Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunology and Medical Microbiology, 65, 215–225.CrossRefPubMedGoogle Scholar
  11. Clary-Meinesz, C., Mouroux, J., Cosson, J., Huitorel, P., & Blaive, B. (1998). Influence of external pH on ciliary beat frequency in human bronchi and bronchioles. European Respiratory Journal, 11, 330–333.CrossRefPubMedGoogle Scholar
  12. Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77, 517–526.CrossRefPubMedGoogle Scholar
  13. Dean, M., & Santis, G. (1994). Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Human Genetics, 93, 364–368.CrossRefPubMedGoogle Scholar
  14. Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalisation as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.CrossRefPubMedGoogle Scholar
  15. Dunaj, S. J., Vallino, J. J., Hines, M. E., Gay, M., Kobyljanec, C., & Rooney-Varga, J. N. (2012). Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environmental Science and Technology, 46, 1914–1922.CrossRefPubMedGoogle Scholar
  16. Duncan, S. H., Louis, P., Thomson, J. M., & Flint, H. J. (2009). The role of pH in determining the species composition of the human colonic microbiota. Environmental Microbiology, 11, 2112–2122.CrossRefPubMedGoogle Scholar
  17. Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B., & Gibson, R. L. (2002). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatric Pulmonology, 34, 91–100.CrossRefPubMedGoogle Scholar
  18. Feizabadi, M. M., Majnooni, A., Nomanpour, B., Fatolahzadeh, B., Raji, N., Delfani, S., et al. (2010). Direct detection of Pseudomonas aeruginosa from patients with healthcare associated pneumonia by real time PCR. Infection, Genetics and Evolution, 10, 1247–1251.CrossRefPubMedGoogle Scholar
  19. Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L., & Schomburg, D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology, 12, 1734–1747.CrossRefPubMedGoogle Scholar
  20. Fung, C., Naughton, S., Turnbull, L., Tingpej, P., Rose, B., Arthur, J., et al. (2010). Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. Journal of Medical Microbiology, 59, 1089–1100.CrossRefPubMedGoogle Scholar
  21. Gjersing, E. L., Herberg, J. L., Horn, J., Schaldach, C. M., & Maxwell, R. S. (2007). NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Analytical Chemistry, 79, 8037–8045.CrossRefPubMedGoogle Scholar
  22. Hwang, T.-L., & Shaka, A. J. (1995). Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. Journal of Magnetic Resonance, 112, 275–279.CrossRefGoogle Scholar
  23. Inglis, S. K., Corboz, M. R., & Ballard, S. T. (1998). Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts. American Journal of Physics, 274, L762–L766.Google Scholar
  24. Kloosterman, T. G., & Kuipers, O. P. (2011). Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. Journal of Biological Chemistry, 286, 44594–44605.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kolpen, M., Hansen, C. R., Bjarnsholt, T., Moser, C., Christensen, L. D., van Gennip, M., et al. (2010). Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax, 65, 57–62.CrossRefPubMedGoogle Scholar
  26. Kosorok, M. R., Zeng, L., West, S. E., Rock, M. J., Splaingard, M. L., Laxova, A., et al. (2001). Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatric Pulmonology, 32, 277–287.CrossRefPubMedGoogle Scholar
  27. Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews, 15, 194–222.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mitsui, Y., Matsumura, K., Kondo, C., & Takashima, R. (1976). The role of mucin on experimental Pseudomonas keratitis in rabbits. Investigative Ophthalmology, 15, 208–210.PubMedGoogle Scholar
  29. Nakada, Y., & Itoh, Y. (2003). Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology, 149, 707–714.CrossRefPubMedGoogle Scholar
  30. Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., et al. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334, 982.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Palmer, K. L., Aye, L. M., & Whiteley, M. (2007). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. Journal of Bacteriology, 189, 8079–8087.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Palmer, K. L., Mashburn, L. M., Singh, P. K., & Whiteley, M. (2005). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. Journal of Bacteriology, 187, 5267–5277.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Renders, N., Römling, Y., Verbrugh, H., & van Belkum, A. (1996). Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. Journal of Clinical Microbiology, 34, 3190–3195.PubMedPubMedCentralGoogle Scholar
  34. Resat, H., Bailey, V., McCue, L. A., & Konopka, A. (2012). Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microbial Ecology, 63, 883–897.CrossRefPubMedGoogle Scholar
  35. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., & Bruce, K. D. (2004). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 42, 5176–5183.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., Kehagia, V., et al. (2006). Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. Journal of Clinical Microbiology, 44, 2601–2604.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rogosa, M., & Bishop, F. S. (1964). The genus Veillonella II. Nutritional studies. Journal of Bacteriology, 87, 574–580.PubMedPubMedCentralGoogle Scholar
  38. Romanowski, K., Zaborin, A., Fernandez, H., Poroyko, V., Valuckaite, V., Gerdes, S., et al. (2011). Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH. BMC Microbiology, 11, 212.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rosenfeld, M., Emerson, J., Williams-Warren, J., Pepe, M., Smith, A., Montgomery, A. B., et al. (2001). Defining a pulmonary exacerbation in cystic fibrosis. Journal of Pediatrics, 139, 359–365.CrossRefPubMedGoogle Scholar
  40. Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62, 1264–1277.CrossRefPubMedGoogle Scholar
  41. Son, M. S., Matthews, W. J, Jr, Kang, Y., Nguyen, D. T., & Hoang, T. T. (2007). In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infection and Immunity, 75, 5313–5324.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sriramulu, D. D., Lünsdorf, H., Lam, J. S., & Römling, U. (2004). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. Journal of Medical Microbiology, 54, 667–676.CrossRefGoogle Scholar
  43. Stressmann, F. A., Rogers, G. B., Marsh, P., Lilley, A. K., Daniels, T. W., Carroll, M. P., et al. (2011). Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? Journal of Cystic Fibrosis, 10, 357–365.CrossRefPubMedGoogle Scholar
  44. Stressmann, F. A., Rogers, G. B., van der Gast, C. J., Marsh, P., Vermeer, L. S., Carroll, M. P., et al. (2012). Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax, 67, 867–873.CrossRefPubMedGoogle Scholar
  45. Tomasi, G., van den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18, 231–241.CrossRefGoogle Scholar
  46. Tunney, M. M., Klem, E. R., Fodor, A. A., Gilpin, D. F., Moriarty, T. F., McGrath, S. J., et al. (2011). Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax, 66, 579–584.CrossRefPubMedGoogle Scholar
  47. Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., et al. (2007). BioMagResBank. Nucleic Acids Research, 36, D402–D408.CrossRefPubMedPubMedCentralGoogle Scholar
  48. van der Gast, C. J., Walker, A. W., Stressmann, F. A., Rogers, G. B., Scott, P., Daniels, T. W., et al. (2011). Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME Journal, 5, 780–791.CrossRefPubMedGoogle Scholar
  49. Vermeer, L. S., Fruhwirth, G. O., Pandya, P., Ng, T., & Mason, A. J. (2012). NMR metabolomics of MTLn3E breast cancer cells identifies a role for CxCR4 in lipid and choline regulation. Journal of Proteome Research, 11, 2996–3003.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Walker, A. W., & Duncan, S. H. (2005). McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology, 71, 3692–3700.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.CrossRefPubMedGoogle Scholar
  52. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., et al. (2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. The Journal of Clinical Investigation, 109, 317–325.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yoon, S. S., Hennigan, R. F., Hilliard, G. M., Ochsner, U. A., Parvatiyar, K., Kamani, M. C., et al. (2002). Pseudomonas aeruginosa anaerobic respiration in biofilms. Relationships to cystic fibrosis pathogenesis. Developmental Cell, 3, 593–603.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Justyna Kozlowska
    • 1
  • Damian W. Rivett
    • 1
  • Louic S. Vermeer
    • 1
  • Mary P. Carroll
    • 2
  • Kenneth D. Bruce
    • 1
  • A. James Mason
    • 1
  • Geraint B. Rogers
    • 1
    Email author
  1. 1.Institute of Pharmaceutical Science, King’s College LondonLondonUK
  2. 2.Cystic Fibrosis UnitSouthampton University Hospitals NHS TrustSouthamptonUK

Personalised recommendations